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Abstract
We describe a method for segmenting neural fiber bundles in diffusion-weighted magnetic
resonance images (DWMRI). As these bundles traverse the brain to connect regions, their local
orientation of diffusion changes drastically, hence a constant global model is inaccurate. We
propose a method to compute localized statistics on orientation information and use it to drive a
variational active contour segmentation that accurately models the non-homogeneous orientation
information present along the bundle. Initialized from a single fiber path, the proposed method
proceeds to capture the entire bundle. We demonstrate results using the technique to segment the
cingulum bundle and describe several extensions making the technique applicable to a wide range
of tissues.

1. Introduction
Segmenting an object from its background is a fundamental task in computer vision. A
typical approach may be based on the assumption that the object and background have
different statistical properties. This assumption has proven quite robust in many situations,
but tends to fail when these statistics vary throughout a given region. The present work is
based on the observation that in many real-world situations the statistical differences are
only meaningful locally, not globally throughout a region. With this in mind, existing global
approaches may be naturally extended to segment larger classes of images involving non-
homogeneous regions.

In this note, we explore this property of locality in the active contour segmentation
framework. Global regional models are typical in employing such an approach. For
example, work by Chan and Vese, proposes separating the first moments of the intensity
distributions [6]. More recently, Michailovich et al. demonstrate a method based on the
Bhattacharyya distance for separating entire distributions [24]. In both of these cases,
features from the entire interior and exterior are compared.

The key contribution of this work is successful application of the statistical localization
approach to the segmentation of neural fiber bundles in diffusion weighted magnetic
resonance imagery (DW-MRI). Specifically, we first demonstrate that methods involving
global comparison of features tend to fail on such imagery. We then show that by extending
these approaches to use statistics sampled locally, we can capture heterogeneous orientation
information along fiber bundles. Figure 1 illustrates such local sampling regions. Once
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initialized with a single fiber path in the bundle, the proposed method evolves an active
surface driven by local statistics to capture the entire bundle as a single region.

We now briefly outline the remainder of this note. First, in Section 2, we provide a literature
review and background of tractography and fiber bundle segmentation algorithms. Second,
in Section 3, we describe our algorithm for locally constraining the region-based method.
Next, in Section 4, we show results on the segmentation of the cingulum bundle using our
full active surface implementation. Finally, in Section 5, we offer concluding remarks and
provide an explanation of how these ideas and results may be extended to improve
performance in future work.

2. Background
Since the advent of DW-MRI, a great deal of research has been devoted to finding and
characterizing neural connections between brain structures. Image resolution is typically
high enough that major white matter tracts, or bundles of densely packed axons, are several
voxels in cross-sectional diameter [27]. The goal of tractography algorithms is to segment
these fiber bundles from the DW-MRI datasets.

Early tractography methods were based on streamlines which employed local decision-
making based on the principal eigenvector of diffusion tensors [26, 42, 4, 7]1.

In these techniques, tracts are propagated from a starting point until they reach some
termination criterion. Due to the local decision-making process, these methods have been
shown to perform poorly in noise and often stop prematurely. These techniques also do not
provide a measure of connectivity for the resulting tracts. Furthermore, several of these
methods do not use the full tensor, reducing the data to the principal eigenvectors, and
subsequently are unable to handle fiber crossings, branchings,“kissings,” etc.

Despite the shortcomings of this approach, streamlining has become the most popular
method for fiber segmentation. To infer fiber bundles from streamline tractography results,
several methods have been proposed for clustering fibers. The goal of clustering is to
capture the behavior of a set of streamlines and to use this collective behavior to drive fiber
bundle segmentation. The end result of clustering algorithms accurately captures many
neural fiber bundles [28, 25].

Recently, another line of work has emerged which seeks to avoid the use of the problematic
streamlines. Advances in tractography have been made which are able to find full brain
optimal connectivity maps from predefined seed regions. These methods are more robust to
noise, and depending upon the underlying metric, may be able to make use of the complete
DW-MRI data rather than examining tensors. These approaches may be subdivided into
stochastic and energy-minimization approaches.

Stochastic approaches produce probability maps of connectivity between a seed region and
the rest of the brain. Parker et al. developed PICo, a probabilistic index for standard
streamline techniques [32]. Perrin et al. presented probabilistic techniques for untangling
fiber crossings using q-ball fields [34]. In other work, Friman et al. proposed a method for
probabilistically growing fibers in a large number of random directions and inferring
connectivity from the resulting percentages of connections between seed and target regions

1The diffusion tensor is one of the simplest diffusion models. It is estimated from a set of diffusion weighted images, each probing the
water diffusion in a different spatial direction. In the three-dimensional case the diffusion tensor is a 3 × 3 symmetric, positive definite
tensor. For details see [5].
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[9]. While providing a measure of connectivity between brain regions, these stochastic
approaches do not provide an explicit segmentation of the fiber bundle itself and often do
not explicitly provide the optimal connection between regions of the brain.

Energy-minimization techniques have also been developed. Parker et al. proposed fast
marching tractography which minimizes an energy based on both the position and direction
of the normal to a propagating front [33]. O'Donnell et al. cast the tractography problem in a
geometric framework by finding geodesics on diffusion tensor manifolds [31]. Similarly,
Prados et al. and Lenglet et al. demonstrated a Riemannian based technique, GCM
(Geodesic Connectivity Mapping), for computing geodesics using a variant of Fast
Marching adapted for directional flows [38, 18]. Jackowski et al. find geodesics using Fast
Sweeping as given by Kao et al. [10, 13, 14]. Pichon et al. and Melonakos et al. use the more
general Finsler metric to find optimal connections [35, 36, 23, 21]. Finally, Fletcher et al.
demonstrated solving Hamilton-Jacobi-Bellman systems on the graphics processing unit to
find geodesics in near real-time speeds [8]. In each of these methods, an optimal path is
found which represents the best connection between the two regions under the given metric.

2.1. Prior Work
A number of surface evolution approaches have been described in the literature for fiber
bundle segmentation which we briefly review. Rousson et al. [40] use a multivariate
Gaussian distribution of the tensor components in a geodesic active region model to drive a
surface evolution towards the segmentation of fiber bundles. The method is applied to the
segmentation of the corpus callosum, but is unable to fully capture its curved character as
discussed by the authors. In a follow-up paper [17] a similar segmentation framework in
combination with a geodesic distance between tensors, and is shown to yield superior
segmentation results especially, when segmenting curved fiber bundles. Rathi et al. [39]
demonstrated modeling the entire tensor distribution to capture inhomogeneity, and
Malcolm et al. [20] extended the technique to segmentation using graph cuts. Additionally,
Awate et al. [3] segmented curved fiber bundles using Markov random fields.

Jonasson et al. proposed two different ways to address the segmentation of curved fiber
bundles in a surface evolution setting: (i) a local approach [11], where the surface evolution
speed is influenced by the similarity of a tensor in comparison to its interior neighbors, and
(ii) a region-based approach, where the similarity measure is based on the notion of a most
representative tensor within the segmented region [12]. In the latter case, capturing highly
curved fiber bundles will be problematic because similarity is based on a single
representative tensor. The approach proposed in this paper is similar to the work of [11] in
as much as it uses local tensor similarities to drive the segmentation. However, Jonasson et
al. use only a few adjacent pixels to determine local statistics. Our approach allows for entire
local regions of pixels both inside and outside the evolving surface to compete thus making
the technique more robust to noise and initialization.

The current work is also an extension of [22] where the authors perform segmentation of the
cingulum bundle using a greedy flood-fill algorithm to find the tensor bundle from an initial
anchor tract. In this previous work, an anatomical prior based on distance to the anchor tract
was used to prevent leaks into surrounding structures. The current work uses a full level set
segmentation framework and does not require such an anatomical prior to prevent leaks and
successfully capture fiber bundles.

Finally, the proposed segmentation is based on that of [16] but has been extended to
segment tensors. There have recently been other publications such as [37, 1, 19]
demonstrating similar localized statistical segmentation schemes. These, are also able to
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segment on heterogeneous structures, but have all been applied to structural MRI or natural
images. This work is the first application of localized region based active contours to DW-
MRI data to the best of our knowledge.

3. The Algorithm
An implicit assumption of classical region-based approaches (i.e., those which compare
features across the full interior with features from the full exterior) is that the interior of the
contour contains nearly homogeneous statistical features (in the sense as being able to
distinguish interior and exterior statistically), such as mean intensity. Under this assumption,
segmentation algorithms proceed by evolving the closed curve or surface to minimize an
energy defined over these global features.

However, if features are heterogeneous across the entire interior or exterior of the object of
interest, it becomes difficult to define a global region-based approach which will accurately
segment the image. For instance, in the case of the cingulum bundle which curves strongly,
the tensors across the bundle vary in orientation along the entire length, as shown in Figure
2. In this sagittal view, we see that it is difficult to define a feature on the space of tensors
which uniquely separates the entire interior of the cingulum bundle from the exterior.
However, we also notice that the tensor shape and anisotropy vary smoothly across the
bundle. Hence, locally along the fiber one can define tensor features which are
distinguishable from the exterior. In Figure 3 we illustrate this by examining the tensors
globally as well as within a particular local region. Notice how examining local regions
enables better statistical separation of interior and exterior regions.

We employ the key assumption that tensors in of the interior of the bundle will be
statistically different from tensors in the exterior of the bundle if examined locally, as the
basis of our technique. We re-formulate standard global statistical modeling techniques in
terms of localized statistics to cope with the non-homogeneous nature of fiber bundles and
the surrounding brain structures. We first describe the localized statistics and then show how
they can be incorporated into a single energy functional to be minimized with a fully
variational level set energy minimization framework.

3.1. Localized Statistics
Let T denote a volume of tensors derived from a given DW-MRI volume and normalized
such that |T(x)| = 1 for every T(x) in the domain Ωx. Also let S be a closed surface
represented as the zero level set of a signed distance function ϕ i.e., S = {x|ϕ(x) = 0} [29,
30]. These representations are helpful in defining local statistics on the orientation of the
tensors so that they can be easily incorporated into an active surface optimization model.

In order to describe localized statistics, we introduce a characteristic ball function in terms
of a global radius parameter, r

(1)

We use  to mask local regions by setting r to be relatively small compared to the
structure to be segmented. This function will be 1 when the point y is within a ball of radius
r centered at x, and 0 otherwise. (Here, x and y represent independent spatial variables
which each describe a 3D location in the volume.) This function is used in conjunction with
the smoothed Heaviside function,
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(2)

to select local interior and exterior regions.  therefore corresponds to the interior of
the evolving front while  corresponds to the exterior. Furthermore, the local
interior at point x is describes as the non-zero portion of  while the non-zero
portion of  describes the local exterior at x. The interior and exterior
regions are shown as (c) and (d) in Figure 1.

Tensors do not lie in a linear vector space, but instead on a conical manifold. In order to
simplify tensor arithmetic, we use a log-Euclidean mapping to place these tensors in a linear
vector space [2]. We may then use standard linear algebra to compute distances to calculate
statistics such as the mean tensor. In this transformation we compute the matrix logarithm of
the 3 × 3 positive definite symmetric tensor. The logarithm maps the tensors onto the log-
Euclidean tangent plane where linear operations may be performed directly. The inverse
mapping to return the conical manifold is a matrix exponential. Thus, in this space, the
integral of a group of tensors, T(x) is computed simply as

(3)

Thus, we define the local tensor interior and exterior means as

(4)

and

(5)

respectively. Finally, we define a log-Euclidean distance,

(6)

using the standard L2 norm after the mapping.

3.2. Segmenting With Localized Statistics
With these well-defined localized statistics, we now introduce an energy functional with
which we can evolve S in order to determine an optimal segmentation based on modeling
local regions by u(x) and v(x). We define this energy in terms of the signed distance
function, ϕ

(7)

where F is defined as
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(8)

We then compute the gradient descent curvature flow that will minimize E using the
calculus of variations. This reveals the following evolution equation:

(9)

By evolving ϕ with this equation, we deform the surface S so that it moves from its
initialization to an optimal segmentation of the fiber bundle. We employ the efficient level
set implementation of [44] to obtain fast and accurate results from the level set evolution in
three dimensions.

3.3. Initialization
The algorithm is initialized with a pre-computed anchor tract, representing the lowest cost
path connecting two maximally spaced-out, pre-defined regions of interest on the fiber
bundle to be segmented (in our case the cingulum bundle). This anchor tract is computed
using the technique described in [21], but any similar tractography method could be
substituted. The result is a single-pixel anchor tract that is then dilated using a 5 × 5 × 5 ball-
shaped structuring element. This produces an initial surface with definite interior and
exterior regions.

4. Experiments
In this section we show experiments on the cingulum bundle. We first describe why the
difficulty and medical importance of this particular structure make it a perfect example on
which to demonstrate this technique. Next, we show the results of several experiments run
on this structure that exemplify the favorable results obtained by this algorithm.

4.1. The Cingulum Bundle
Here, we motivate the problem of segmenting the cingulum bundle. The cingulum bundle is
a 5-7 mm in diameter fiber bundle that interconnects all parts of the limbic system. It
originates within the white matter of the temporal pole, and runs posterior and superior into
the parietal lobe, then turns, forming a “ring-like belt” around the corpus callosum, into the
frontal lobe, terminating anterior and inferior to the genu of the corpus callosum in the
orbital-frontal cortex [41]. Moreover, the cingulum bundle consists of long, association
fibers that directly connect temporal and frontal lobes, as well as shorter fibers radiating into
their own gyri. The cingulum bundle also includes most afferent and efferent cortical
connections of cingulate cortex, including those of prefrontal, parietal and temporal areas,
and the thalamostriatae bundle. In addition, lesion studies document a variety of
neurobehavioral deficits resulting from a lesion located in this area, including akinetic
mutism, apathy, transient motor aphasia, emotional disturbances, attentional deficits, motor
activation, and memory deficits. Because of its involvement in executive control and
emotional processing, the cingulum bundle has been investigated in several clinical
populations, including depression and schizophrenia. Previous studies, using diffusion
tensor imagery, in schizophrenia, demonstrated decrease of fractional anisotropy in the
anterior part of the cingulum bundle [15, 43], at the same time pointing to the technical
limitations restricting these investigations from following the entire fiber tract.
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4.2. Bundle Segmentation Results
We ran experiments on several datasets of DW-MRI volumes of normal brains. Each dataset
contains seed and target points drawn by experts which were used to extract a single
representative fiber within the bundle. From this initialization, we used the proposed
technique to determine a surface which encloses the entire fiber bundle.

There is one major parameter used in this technique: the localization radius r that describes
the formation of the localized statistics which drive the segmentation. This parameter was
chosen based on anatomical knowledge that the diameter size of a tensor bundle is at most
7mm [41]. Hence, we used r =7mm to ensure that the entire bundle would be included in
statistical computations. The other parameter used in this technique is the weighting
coefficient, λ in equation 7. This parameter determines the intrinsic smoothness of the
surface. Because the surface is necessarily high in curvature due to its fine structure, we set
this parameter at λ = 0.001. The values of λ and r were the only parameters used in the
technique and were kept constant throughout all experiments.

Figure 4 shows the segmentation of the left cingulum bundle as well as the left and right
cingulum bundles together. The initialization consists of a single fiber, and is shown as a
thin white volume. The final segmentations are shown as thicker yellow volumes. Two
views of the final segmentations are provided. Using the proposed method, the bundle is
segmented without leaking, and captures the changing properties of the bundle as it bends
around the corpus callosum. This is all accomplished without any explicit shape prior to
defend against leaks. Furthermore, the smoothness of the detected tensor is ensured by the
intrinsic properties of the evolving active surface.

5. Conclusion
This paper proposed a novel segmentation method for diffusion tensor images. The approach
is based on a level-set segmentation technique separating localized tensor statistics. This
fully variational surface evolution scheme is based upon a local mean modeling energy. The
localization of the statistics allows it to capture directionally varying fiber bundles
(specifically the cingulum bundle) simply but robustly. This is especially useful as many
fiber bundles in the brain that curve strongly (e.g., the cingulum bundle, the arcuate
fasciculus, the corpus callosum). Furthermore, the ability of local models to discriminate
regions is able to prevent leakage without the need for shape or distance priors that in effect
mask off unwanted parts of the segmentation.

Several other extensions are possible, such as the use of more sophisticated distance and
similarity measures. The proposed localized method as well as global region-based
segmentation methods will benefit from similarity metrics using the complete tensor
information. In particular, more suitable tensor-based statistics may be explored in this
framework, such as those employed by Lenglet et al. [17].
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Figure 1.
Visualization of the local regions over which tensor statistics are computed in order to
segment fiber bundles with heterogeneous statistics.
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Figure 2.
Example of the need for local constraints on region-based segmentation algorithms which
attempt to segment the cingulum bundle. Notice that tensor anisotropy and orientation vary
across the length of the cingulum bundle.
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Figure 3.
A visualization of the high-dimensional tensors in 3D by projection onto a unit vector.
Tensors from the interior of the segmented fiber bundle are shown in red, and tensors from
the exterior are shown in black. (a) Globally, interior and exterior tensors are mixed and not
easily separable. (b) When a local region centered on a point on the surface of the fiber
bundle is examined, interior and exterior tensors appear separable.
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Figure 4.
Top Row: Segmentation of left cingulum bundle (CB). (a) Shows initialization from single
anchor tract. (b,c) Show multiple views of the final segmentation. Bottom Row:
Segmentation of left and right cingulum bundles (CBs) together. (d) Initialization from
single tracts. (e,f) Multiple views of the final segmentation.
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