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We propose a technique to simultaneously estimate the local fiber orientations and perform multi-fiber
tractography. Existing techniques estimate the local fiber orientation at each voxel independently so
there is no running knowledge of confidence in the measured signal or estimated fiber orientation. Fur-
ther, to overcome noise, many algorithms use a filter as a post-processing step to obtain a smooth trajec-
tory. We formulate fiber tracking as causal estimation: at each step of tracing the fiber, the current
estimate of the signal is guided by the previous. To do this, we model the signal as a discrete mixture

I[?i?/fﬂ/:izdrf:wei hted MRI of Watson directional functions and perform tractography within a filtering framework. Starting from
Tracmgraphyg a seed point, each fiber is traced to its termination using an unscented Kalman filter to simultaneously

fit the signal and propagate in the most consistent direction. Despite the presence of noise and uncer-
tainty, this provides an accurate estimate of the local structure at each point along the fiber. We choose
the Watson function since it provides a compact representation of the signal parameterized by the prin-
cipal diffusion direction and a scaling parameter describing anisotropy, and also allows analytic recon-
struction of the oriented diffusion function from those parameters. Using a mixture of two and three
components (corresponding to two-fiber and three-fiber models) we demonstrate in synthetic experi-
ments that this approach reduces signal reconstruction error and significantly improves the angular res-
olution at crossings and branchings. In vivo experiments examine the corpus callosum and internal
capsule and confirm the ability to trace through regions known to contain such crossing and branching
while providing inherent path regularization.

Kalman filtering
Watson directional function

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The advent of diffusion-weighted magnetic resonance imaging
has provided the opportunity for non-invasive investigation of
neural architecture. Using this imaging technique, clinicians and
neuroscientists want to ask how neurons originating from one re-
gion connect to other regions, or how well-defined those connec-
tions may be. For such studies, the quality of the results relies
heavily on the chosen fiber representation and the method of
reconstructing pathways.

To begin studying the microstructure of fibers, we need a model
to interpret the diffusion-weighted signal. Such models fall broadly
into two categories: parametric and nonparametric. One of the
simplest parametric models is the diffusion tensor which describes
a Gaussian estimate of the diffusion orientation and strength at
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each voxel (Basser et al., 2002; Behrens et al., 2003). While robust,
this model can be inadequate in cases of mixed fiber presence or
more complex orientations (Alexander et al., 2002; Frank, 2002).
To handle more complex diffusion patterns, various parametric
models have been introduced: weighted mixtures (Alexander
et al.,, 2001; Tuch et al., 2002; Kreher et al., 2005; Friman et al.,
2006; Peled et al., 2006), higher order tensors (Hlawitschka and
Scheuermann, 2005; Basser and Pajevic, 2007), directional func-
tions (McGraw et al., 2006; Kaden et al., 2007; Rathi et al., 2009),
and diffusion oriented transforms (Ozarslan et al., 2006).
Nonparametric models often provide more information about
the diffusion pattern. Instead of estimating a discrete number of fi-
bers as in parametric models, nonparametric techniques estimate
an oriented distribution function (ODF) describing an arbitrary
configuration of fibers. For this estimation, Tuch (2004) introduced
Q-ball imaging to numerically compute the ODF using the Funk-
Radon transform. The use of spherical harmonics simplified the
computation with an analytic form (Anderson, 2005; Hess et al.,
2006; Descoteaux et al., 2007) and spherical ridgelets further re-
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duced the coefficients required (Michailovich and Rathi, 2008). Re-
cently, Poupon et al. (2008) demonstrated online direct estimation
of single-tensor and harmonic coefficients using a linear Kalman
filter. Another approach to producing an ODF is to assume a model
for the signal response of a single-fiber and use spherical deconvo-
lution (Jian and Vemuri, 2007; Jansons and Alexander, 2003; Tour-
nier et al., 2004; Kaden et al., 2007; Kumar et al., 2008). A good
review of both parametric and nonparametric models can be found
in Alexander (2005) and Descoteaux et al. (2009).

Based on these models, several techniques attempt to recon-
struct pathways. Deterministic tractography involves directly fol-
lowing the diffusion pathways. In the single tensor model, this
means simply following the principal diffusion direction (Basser
et al., 2000), while multi-fiber models often include techniques
for determining the number of fibers present or when pathways
branch (Hagmann et al., 2004; Kreher et al.,, 2005; Guo et al.,
2006; Qazi et al., 2008). Kalman and particle filters have been used
with single tensor streamline tractography (Gossl et al., 2002;
Bjornemo et al., 2002; Zhang et al., 2009; Imperati et al., 2008),
but these have been used for path regularization and not to esti-
mate the full underlying fiber model. Another approach to regular-
izing single tensor tractography uses a moving least squares
estimate weighted with the previous tensor (Zhukov and Barr,
2002). While this present study focuses on deterministic tech-
niques, probabilistic methods have been developed to form con-
nections by diffusing out a connectivity map according to the
ODF (Parker et al., 2003; Campbell et al.,, 2005; Hosey et al.,
2005; Behrens et al., 2007).

While parametric methods directly describe the principal dif-
fusion directions, interpreting the ODFs from model independent
representations typically involves determining the number and
orientation of principal diffusion directions present (Zhan and
Yang, 2006; Seunarine et al., 2007; Jian et al., 2007). For exam-
ple, Bloy and Verma (2008) and Ghosh et al. (2008) find them
as maxima on the spherical surface; Descoteaux et al. (2009)
deconvolve with a sharpening kernel before extracting maxima;
and Schultz and Seidel (2008) decompose a high-order tensor
into a mixture of rank-1 tensors. Ramirez-Manzanares et al.
(2008) provide a quantitative comparison of several such
techniques.

Finally, Poupon et al. (2008) proposed using a linear Kalman fil-
ter for online, direct estimation of either single-tensor or harmonic
coefficients while successive diffusion image slices are acquired,
while (Deriche et al., 2009) revisited the technique to account for
proper regularization and proposed a method to quickly determine
optimal gradient set orderings.

1.1. Our contributions

Of the approaches listed above, almost all fit the model at each
voxel independent of other voxels. In this paper, we describe a
method to estimate the model parameters and perform tractogra-
phy simultaneously within a causal filter. In this way, the estima-
tion at each position builds upon the previous estimates along the
fiber.

To begin estimating within a finite dimensional filter, we model
the diffusion signal using a mixture of either two or three Watson
directional functions (Rathi et al., 2009). This enables estimation
directly from the raw signal data without separate preprocessing
or regularization steps. Because the signal reconstruction is nonlin-
ear, we use the unscented Kalman filter to perform model estima-
tion and then propagate in the most consistent direction.Using
causal estimation in this way yields inherent path regularization,
low signal reconstruction error, and accurate fiber resolution at
crossing angles not found with independent optimization. We fur-
ther note that the approach presented here generalizes to arbitrary

fiber model with finite dimensional parameter space, and since the
estimation is inherently smooth, it does not require arbitrary ter-
mination criteria such as curvature.

2. Approach

The main idea of our approach is to trace the local fiber orienta-
tions using the estimation at previous positions to guide estima-
tion at the current position. In a loop, the Kalman filter estimates
the model at the current position, moves a step in that direction,
and then begins estimation again. Iterative estimation in this man-
ner greatly improves the accuracy of resolving individual orienta-
tions and yields inherently smooth tracts despite the presence of
noise and uncertainty. Further, since each iteration begins with a
near-optimal solution provided by the previous estimation, the
convergence of model fitting is improved and many local minima
are naturally avoided.

Section 2.1 provides the necessary background on modeling the
measurement signal using Watson functions and defines the spe-
cific fiber model employed in this study. Then, Section 2.2 de-
scribes how this model may be estimated using an unscented
Kalman filter, and finally Section 2.3 summarizes the entire
algorithm.

2.1. Modeling local fiber orientations

In diffusion weighted imaging, image contrast is related to the
strength of water diffusion, and our goal is to accurately relate
these signals to an underlying model of fiber orientation. At each
image voxel, diffusion is measured along a set of distinct gradi-
ents, uy,...,u, €S> (on the unit sphere), producing the corre-
sponding signal, s=s;,...,s,]” € R". For voxels containing a
mixed diffusion pattern, a general weighted formulation may be
written as,

Si=5%0. wie buib: (1)
7

where s, is a baseline signal intensity, b is an acquisition-specific
constant, w; are convex weights, and D; is a tensor describing a dif-
fusion pattern (Tuch et al., 2002, 2005).

Considering a single tensor, we now follow the formulation of
Rathi et al. (2009) to define the Watson directional function which
approximates the apparent diffusion pattern. We begin by noting
that any diffusion tensor D can be decomposed as D = UAUT,
where U is a rotation matrix and A is a diagonal matrix with eigen-
values {/1,/2,43}. These eigenvalues determine the shape of the
tensor: ellipsoidal, planar, and spherical. For example, if
J1 > A3 > /3, then the shape is ellipsoidal with the major axis of
the ellipsoid pointing to the eigenvector corresponding to 4;. Intu-
itively, it represents strong diffusion along that particular direc-
tion. When 1; = 4, > 43, the shape is planar indicating diffusion
along orthogonal directions, and finally, when 4; = /1, = /3, the dif-
fusion is spherical (isotropic).

The most common of these configurations is ellipsoidal with
principal diffusion direction m and eigenvalue /;, and hence the
first step to introducing directional functions is to approximate
the tensor by its first eigenvector expansion: D ~ /;mm’. Using
this, each exponent in Eq. (1) may then be rewritten,

—bulDu; ~ — bJyu] (mm")u;, @)
= —b/l] (uiTm)zy (3)
— 7k(uiTm)27 “)

where the scalar k concentration parameter determines the degree
of anisotropy. Finally, the general model may be restated:
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s =AY wehtim), (5)
J

where A is a normalization constant such that ||s|| = 1. For purposes
of comparison, this normalization will also be done to signals ob-
tained from scanner. Note that, while the diffusion tensor requires
six parameters, these Watson functions require four parameters:
three for the orientation vector m and one concentration parameter
k. Employing spherical coordinates further reduces the unit vector
m to two parameters. Fig. 1a demonstrates how adjusting the k-va-
lue produces different diffusion patterns, and Fig. 1b illustrates two
multi-fiber configurations.

From this general mixture model, we choose to start with a re-
stricted form involving two equally-weighted Watson functions.
This choice is guided by several previous studies. Behrens et al.
(2007) showed that at a b-value of 1000 the maximum number
of detectable fibers is two. Several other studies have also found
two-fiber models to be sufficient (Tuch et al., 2002; Kreher et al.,
2005; Zhan and Yang, 2006; Peled et al., 2006). Using this as a prac-
tical guideline, we started with a mixture of two Watson functions
as our local fiber model. Further, following the study of Zhan and
Yang (2006), we assume an equal combination (50-50%) of the
two Watson functions. While the effect of this second choice ap-
pears to have little to no effect on experiments, we have yet to
quantify any potential loss in accuracy. These assumptions leave
us with the following two-fiber model used in this study:

5= ’% (e tawim 4 g aum?) (6)
where k; and m; parameterize the first Watson function, and k, and
m, parameterize the second, and A is again a normalization con-
stant such that ||s|| = 1. Thus the equally-weighted two-fiber model
is fully described by the following parameters: k;, m;, k,mj,.
Extending off the two-Watson model, we can directly formulate
the equally-weighted three-Watson model:

A wrm?
Si=3 > ehimmy (7)
=1

with the additional parameters k; and ms.

Finally, from such parameters, Rathi et al. (2009) describe how
one may compute the ODF analytically by applying the Funk-Ra-
don transform directly to Eq. (5). The ODF can be reconstructed di-
rectly from the same parameters describing the signal without a

f

(a) Reconstructed signals for strong diffusivity (k = 2),
weak diffusivity (k = 0.5), and isotropic diffusion pat-
terns (k = 0.01).
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(b) Signals for two-fiber and three-
fiber mixtures.

’
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Fig. 1. Watson directional functions are capable of representing various diffusion
patterns and fiber orientations.

separate estimation process. For the two-Watson model (Eq. (6))
the ODF is approximated by,

fi= g (e—%<1—<u?m1>2> I ef%muzmm)’ 8)
and for the three-Watson model (Eq. (7)) this becomes,
3 ,
f=By o m, ®
=

where B is a normalization factor such that > f; = 1.

2.2. Estimating the fiber model

Given the measured signal at a particular voxel, we want to esti-
mate the underlying model parameters that explain this signal. As
in streamline tractography, we treat the fiber as the trajectory of a
particle which we trace out. At each step, we examine the mea-
sured signal at that position, estimate the underlying model
parameters, and propagate forward in the most consistent direc-
tion. Fig. 2 illustrates this filtering process.

To use a state-space filter for estimating the model parameters,
we need the application-specific definition of four filter
components:

1. The system state x: the model parameters

2. The state transition f[-]: how the model changes as we trace the
fiber

3. The observation h[-]: how the signal appears given a particular
state

4. The measurement y: the actual signal obtained from the
scanner

For our state, we directly use the model parameters, thus the
two-fiber model in Eq. (6) has the following state vector:

X=[m k; my ky)’, meS?keR (10)

Similarly, the three-Watson model adds additional state variables
for the third component:

X = [m1 k] m; kz ms k3,}T. (11)

While each m could be represented in a reduced spherical form, the
antipodes of the spherical parameterization would then introduce
nonlinearities which complicate estimation. For the state transition
we assume identity dynamics; the local fiber configuration does not
undergo drastic change from one position to the next. Our observa-
tion is the signal reconstruction, y = = [sq, ... ,sn]T using s; from
Eq. (6), and our measurement is the actual signal interpolated at
the current position.Theoretically, the measurement noise model
is Rician and not additive Gaussian as the Kalman filter assumes.
A specific formulation of the Kalman filter for Rician noise might
provide better performance under severe noise, but such a formula-
tion is beyond the focus of this paper.

Since the signal reconstruction is a nonlinear processes, we em-
ploy an unscented Kalman filter to perform nonlinear estimation.
Similar to classical linear Kalman filtering, the unscented version
seeks to reconcile the predicted state of the system with the mea-
sured state and addresses the fact that those two processes (pre-
diction and measurement) may be nonlinear or unknown. It does
this in two phases: first it uses the system transition model to pre-
dict the next state and observation, and then it uses the new mea-
surement to correct that state estimate. In what follows, we
present the algorithmic application of the filter. For more thorough
treatments see Julier and Uhlmann (2004), van der Merwe and
Wan (2003).
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neural fibers

Unscented Kalman Filter

Tt+1

DYt

Fig. 2. System overview illustrating relation between the neural fibers, the scanner signals, and the unscented Kalman filter as it is used to estimate the local model. At each
step, the filter uses its current model state (x;) to predict the observed scanner signal (y..1,) and then compares that against the actual measured signal (y,) from the scanner

in order to update its internal model state (X;.1).

It is important to note two alternative techniques for nonlinear
estimation. First, particle filters are commonly used to provide a
multi-modal estimate of unknown systems. With respect to an n-
dimensional state space, particle filters require the number of par-
ticles to be exponential to properly explore the state space. In con-
trast, the unscented filter requires only 2n + 1 particles (sigma
points) for a Gaussian estimate that space. Further, for many
slowly varying systems, the multi-modal estimate is unnecessary:
from one voxel to the next, fibers tend not to change direction
drastically. Second, the extended Kalman filter may also be used
to provide a Gaussian estimate after linearizing the system; how-
ever, the unscented Kalman filter provides a more accurate esti-
mate with equivalent computational cost and altogether avoids
the attempt at linearization (Julier and Uhlmann, 2004; van der
Merwe and Wan, 2003; Lefebvre et al., 2004).

The unscented Kalman filter considers a system of interest at
time t given a Gaussian estimate of its current state with mean
(X, € R") and covariance (P, € R™"). Prediction begins with the for-
mation of a set X; = {y;} ¢ R" of (2n + 1)sigma point states with
associated convex weights, w; € R, each a perturbed version of
the current state. We use the covariance, P;, to distribute this set:

1
fo =% 2+ 1)

1o =%+ [VIFRP) i = 30— [V F P 12)

i i

Wo=K/(N+K) Wj=Wy,=

where [A]; denotes the i™ column of matrix A and « is an adjustable
scaling parameter (x = 0.01 in all experiments). The sigma points
are spread in this manner so as to retain the mean and covariance,
yet alternative set arrangements are sometimes used to control
additional characteristics of the distribution (Julier and Uhlmann,
2004).

This set is then propagated through the state transition func-
tion, 7 = f[y] € R", to obtain a new predicted sigma point set:
Xes1e = {f[xi]} = {:}- Since in this study we assume the fiber con-
figuration does not change drastically as we follow it from one vox-
el to the next, we may write this identity transition as,
Xer1e = f[X:] = X;. These are then used to calculate the predicted
system mean state and covariance,

2n
X1 = E WiXi,
i=0
2n

Pxx :Zwi(}zi*)—(tﬂ\t) (Zi*itﬂ\t).r‘i‘Qv (13)

i=0

where Q is the injected process noise bias. This procedure comprises
the unscented transform used to estimate the behavior of a nonlinear

function: spread sigma points based on your current uncertainty,
propagate those using your transform function, and measure their
spread.

To obtain the predicted observation, we again apply the un-
scented transform this time using the predicted states, X .y, to
estimate what we expect observe from the measurement of each
state: y = h[}] € R™. Keep in mind that, for this study, our observa-
tion is the signal reconstruction from Eq. (6), and the measurement
itself is the diffusion-weighted signal, s, interpolated at the current
position. From these, we obtain the predicted set of observations,
Ye1e = {h[ju]} = {y;}, and may calculate its mean and covariance,

2n
Ve = Zwi?i,
i=0
2n T
Py = ZWi (91 = Yerrie) (Pi = Yesre) +R, (14)
i=0
where R is the injected measurement noise bias. The cross correla-
tion between the estimated state and measurement may also be
calculated:

2n
- < - — T
Py = > Wi(Jli = Xe1e) (Ji = Vesr) - (15)
i—0
As is done in the classic linear Kalman filter, the final step is to
use the Kalman gain, K = nyP;yl. to correct our prediction and pro-
vide us with the final estimated system mean and covariance,

Xer1 = Xeape + KV — Yeap), (16)
Pt+1 = Pxx - KPnyT-, (17)

where y, € R™ is the actual signal measurement taken at this time.
2.3. The algorithm

To summarize the proposed technique, we are using the un-
scented Kalman filter to estimate the local model parameters as
we trace out each fiber. For each fiber, we maintain the position
at which we are currently tracing it and the current estimate of
its model parameters (mean and covariance).

At each step of tracing a fiber, we predict its new orientation,
which in this case is simply identity: X;,1; = X;. Our actual mea-
surement y, in Eq. (16) is the diffusion-weighted signal s recorded
by the scanner at this position. At subvoxel positions we use trilin-
ear interpolation directly on the diffusion-weighted images. Fur-
ther, we normalize this measurement to place it on the same
scale as Eq. (6) and Eq. (7). With these, we step through the equa-
tions above to find the new estimated model parameters, X;,1.
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Last, this filtering procedure is used to drive second-order Run-
ge—Kutta path integration through the volume: at each step we use
the filter to estimate and then report the most consistent of the
principal diffusion directions for integration. Algorithm 1 outlines
these steps.

Algorithm 1. Main loop repeated for each fiber

repeat
Form the new weighted sigma points X; = {w;, y; ,-2:"0
around the current mean X, and covariance P;

Xo=X; }(,»:x[+[ (n+K)Pt]l_ Livn =Xt — [\/(n+K)Pr]

Predict the observed signals from these sigma points
(Eq. (6))

Update estimate using Kalman gain K and scanner
measurement y,

i

K=PyP,) Xei1=Xeuu+K(Y=Fei1p) Peot =P —KPy K"

Proceed to new position along most consistent my
until estimated model appears isotropic

3. Experiments

We first use experiments with synthetic data to validate our
technique against ground truth. We confirm that our approach
accurately estimates the true underlying signal and reliably recog-
nizes crossing fibers over a broad range of angles. Comparing
against two alternative multi-fiber optimization techniques, we
find the filtered approach gives consistently superior results in
both respects (Section 3.1).We follow this with the estimation of
three-fiber crossings (Section 3.2). Next, we perform tractography
through crossing fiber fields and examine the underlying orienta-
tions and branchings (Section 3.3). Lastly, we examine a real data-
set to demonstrate how causal estimation is able to pick up fibers
and branchings known to exist in vivo yet absent using other tech-
niques (Section 3.4).

Following the experimental method of generating synthetic
data found in Tournier et al. (2004), Descoteaux et al. (2009) and
Schultz and Seidel (2008), we pull from our real data set the
300 voxels with highest fractional anisotropy (FA) and compute
the average eigenvalues among these voxels: {1200,100,
100}um?/ms (FA = 0.91). We generated synthetic MR signals
according to Eq. (1) using these eigenvalues to form an anisotropic
tensor at both b =1000 and b = 3000, using 81 gradient directions
uniformly spread on the hemisphere, and assume s, = 1. We gen-
erate two separate data sets, each with a different level of Rician
noise: low-noise (¢ = 0.1) and high-noise (¢ = 0.2). To get an idea
of this level of noise, Fig. 3 visualizes a sample voxel with two fi-
bers at a 60° angle.

Throughout the experiments, we draw comparison to three
alternative techniques. First, we use the same two-Watson model
from Section 2.1 with a variant of matching pursuit for brute force,
dictionary-based optimization Mallat and Zhang, 1993. In our
implementation, we construct a finite dictionary of two-Watson
signals at a range of various k-values, essentially discretizing the
search space across orientations and k-values. Given a new mea-
sured signal, the signal from the dictionary with highest inner
product provides an estimate of orientation and concentration.
While our signal is produced at 81 gradient directions, we use
341 directions to construct the dictionary, thus any error is due
to the method’s sensitivity to noise and discretization. Note that
by using 341 orientation directions there is roughly an 8° angular
difference between offset orientations, hence we see that the angu-
lar error is often at most 8°. This approach highlights the effect of

- -~ -
| Y I Y
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3 F : .

(a) Ground truth signal and ODF (b=1000, b=3000).
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(b) Low- and high-noise signals (b=1000, b= 3000).

Fig. 3. Synthetic two-fiber voxel signals at a 60° angle (black wires indicate principal
diffusion directions). Each column shows the same surface from two viewpoints. (a)
Shows the ground truth signal and corresponding true ODF (left to right). (b) Shows
the corrupted versions of the ground truth signal (left to right).

using the same model but changing the optimization technique to
one that treats each voxel independently. Second, we use spherical
harmonics for modeling (Tournier et al.,, 2004) and fiber-ODF
sharpening for peak detection as described in Descoteaux et al.
(2009) (order I = 8, regularization L = 0.006). This provides a com-
parison with an independently estimated, model-free representa-
tion. Note that this technique is very similar to spherical
deconvolution. Last, when performing tractography on real data,
we use single-tensor streamline tractography as a baseline?.

The unscented Kalman filter conveniently requires few param-
eters. Specifically, of importance are the matrices for injecting
model noise Q and injecting measurement noise R (see Egs. (13)
and (14)). Fortunately, the relative magnitude of each can be deter-
mined off-line from the data itself. We found that values on the or-
der of g, = 0.001 (roughly 2°), g, = 10, and r; = 0.02 were quite
robust for the appropriate diagonal entries of Q and R. Off-diagonal
entries were left at zero.

3.1. Signal reconstruction and angular resolution

While the independent optimization techniques can be run on
individually generated voxels, care must be taken in constructing
reasonable scenarios to test the causal filter. For this purpose, we
constructed an actual 2D field through which to navigate (see
Fig. 7 and 8a). In the middle is one long fiber pathway where the
filter begins estimating a single component but then runs into a
field of voxels with two crossed fibers at a fixed angle. In this cross-
ing region we calculated error statistics. Similarly, we computed
the angular error over this region using both sharpened spherical
harmonics and matching pursuit. We generated several similar
fields, each at a different fixed angle. By varying the size of the
crossing region or the number of fibers run, we ensured that each
technique performed estimation on at least 500 voxels.

In the first experiment, we look at signal reconstruction error.
We calculate the mean squared error of the reconstructed signal,
s, against the ground truth signal, § (pure, no noise):
s — $|I*/1I8|I>. In essence, this is exactly what the filter is trying
to minimize: the error between the reconstructed signal and the

2 Using the freely available Slicer 2.7 (http://www.slicer.org).
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measured signal. Fig. 4 shows the results of using the proposed fil-
ter, matching pursuit, and spherical harmonics. Over each tech-
nique’s series of estimations, the trendlines indicate the mean
error while the bars indicate one standard deviation. Spherical har-
monics (red) appear to produce a smooth fit to the given noisy data,
while matching pursuit (blue) shows the effect of discretization
and sensitivity to noise. The two raised areas are a result of the
dictionary being constructed with an 8° minimum separation

0.015

0.010

MSE of reconstructed signal

crossing angle (ground truth)

between any pair of orientations. This experiment demonstrates
that the proposed filter (black) accurately and reliably estimates
the true underlying signal.

In the second experiment, we looked at the error in angular res-
olution by comparing the filtered approach to matching pursuit
and sharpened spherical harmonics. Fig. 5a and b show the sensi-
tivity of matching pursuit. Consistent with the results reported in
Descoteaux et al. (2009) and Descoteaux et al. (2007), spherical
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Fig. 4. Mean squared error (MSE) between reconstructed signal and ground truth signal at various crossing angles (low-noise on left, high-noise on right). Notice how the
increased noise has little effect on the filter (black) compared to using matching pursuit (blue) or sharpened spherical harmonics (red). (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Average angle error at various crossing angles comparing all three techniques: matching pursuit (blue), sharpened spherical harmonics (red), and the proposed filter
(black). The filter provides stable and consistent estimation compared to either alternative technique. Each subfigure shows both the low-noise and high-noise experiments
(left, right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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harmonics are generally unable to detect and resolve angles below
50° for b=1000 or below 40° for b =3000. Fig. 5c and d confirm
this, respectively. This experiment demonstrates that for
b =1000, the filtered approach consistently resolves angles down
to 20-30° with 5° error compared to independent optimization
which fails to reliably resolve below 60° with as much as 15° error.
For b =3000, the filtered approach consistently resolves down to
20-30° with 2-3° error compared to independent optimization
which cannot resolve below 50° with 5° error.

3.2. Three-fiber crossings

Resolving three-fiber crossings has proven difficult for many
techniques, especially at the lower b-values typically used in
in vivo studies. For example, Tuch et al. (2002) found the general
multi-tensor model to be unstable for three or more components
using data at b=1077 with 126 gradients. Bergmann et al.
(2006) only reported results for up to two-tensors (b = 700, 30 gra-
dients). Behrens et al. (2007) found that b-values at upwards of
3000-4000 were required for detecting more than two fibers in
simulations and none were found in vivo (b = 1000, 60 gradients).
Further, many studies specifically use at most two orientations
(Alexander et al., 2001; Kreher et al., 2005; Peled et al., 2006. How-
ever, detection of three-fiber crossings has been reported using
spherical harmonics. Tournier et al. (2004) reported such crossings
using spherical deconvolution (b =2971, 60 gradients) and Desco-
teaux et al. (2009) also found three-fiber voxels using spherical
harmonics with fiber sharpening (b = 1000, 60 gradients). Most re-
cently, Schultz and Seidel (2008) demonstrated tensor decomposi-
tion as a promising technique for resolving such configurations.

Following the experimental setup of Schultz and Seidel (2008),
we constructed an additional set of synthetic fields this time with
three equally-weighted Gaussian components. As in the synthetic
fields shown in Fig. 7 and Fig. 8a, one fiber is angled up and is
the intended orientation to track through the region. The other
two orientations were set so that the endpoints of the three prin-
cipal axes formed an equilateral triangle with any two separated
by the specified angle. With this setup, Fig. 6 shows that the fil-
tered approach provides an accurate estimate that reaches roughly
60° compared to 70° for spherical harmonics (Descoteaux et al.,
2009). A significant bias is apparent at more acute angles using
either technique.

3.3. Synthetic tractography

Having verified the technique’s accuracy, we now turn to the
resulting tractography. Fig. 7 provides examples of synthetic cross-
ing fiber fields each at different fixed angles: 40°, 50° 60°
(b=3000, noisy). In our experiments, we start fibers from the
bottom and propagate upward where they encounter the crossing
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Fig. 7. Fiber passing through 40°, 50°, and 60° synthetic crossings (b = 3000, noisy).
Blue dashes represent the orientation of the second fiber when detected.

region. Here we show one such fiber and use blue glyphs to indi-
cate the second component detected as the it passes through the
crossing region. In general, we found that in regions with only
one true fiber present (those outside the crossing), the second com-
ponent either aligned with the first or adjusted its concentration
parameter to fill out the isotropic component of the signal. Further,
we found the filtering strategy to be robust with respect to initial
configuration and choice of injected noise matrices Q and R (Egs.
(13) and (14)).

In Fig. 8a we show another 60° field (b = 1000, noisy) but take a
closer look at several points along a single fiber as it passes through
the crossing region. We also examine the corresponding ODFs
reconstructed using sharpened spherical harmonics and the pro-
posed filter. As expected, the sharpened spherical harmonics often
do not detect the crossing but result in a single angle as seen in the
middle two samples in Fig. 8b. A close examination of the reported
axes shows the bias toward a single averaged axis as reported in
Zhan and Yang (2006), Tournier et al. (2007) and Schultz and Seidel
(2008). In contrast, the filtered results are consistent and accurate.

3.4. In vivo tractography

We tested our approach on a real human brain scan acquired on
a 3-T GE system using an echo planar imaging (EPI) diffusion
weighted image sequence. A double echo option was used to re-
duce eddy-current related distortions. To reduce impact of EPI spa-
tial distortion, an eight channel coil was used to perform parallel
imaging using Array Spatial Sensitivity Encoding Techniques (GE)
with a SENSE-factor (speed-up) of 2. Acquisitions have 51 gradient
directions with b = 900 and eight baseline scans with b = 0. The ori-
ginal GE sequence was modified to increase spatial resolution, and
to further minimize image artifacts. The following scan parameters
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Fig. 6. The filtered approach (black) is able to resolve three-fiber crossings with improved accuracy and at sharper angles compared to using sharpened spherical harmonics
(red). Both the low-noise and high-noise experiments are shown at b = 3000 (left, right). (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 8. One fiber passing through an example synthetic field (b = 1000, noisy) and
the estimated ODFs using spherical harmonics and the filter as it passes through the
crossing region (blue box). The filter provides consistent angular resolution along
the fiber while independent spherical harmonic modeling at those same locations
misses the second fiber in two voxels.

were used: TR 17000 ms, TE 78 ms, FOV 24 cm, 144x144 encoding
steps, 1.7 mm slice thickness. All scans had 85 axial slices parallel
to the AC-PC line covering the whole brain. In addition, b = 0 field
inhomogeneity maps were collected and calculated.

We first focused on fibers originating in the corpus callosum.
Specifically, we sought to trace out the lateral transcallosal fibers
that run through the corpus callosum out to the lateral gyri. It is
known that single-tensor streamline tractography only traces out
the dominant pathways forming the U-shaped callosal radiation
(Fig. 9a and Fig. 15a). Several studies document this phenomena,
among them the works of Descoteaux et al. (2009) and Schultz
and Seidel (2008) have side-by-side comparisons. These fibers have

y2 : &
(c) Filtered two-Watson

been reported in using diffusion spectrum imaging (Hagmann
et al., 2004), probabilistic tractography (Kaden et al., 2007; Anwan-
der et al., 2007; Descoteaux et al., 2009), and more recently with
tensor decomposition (Schultz and Seidel, 2008).

We start with two basic experiments: first examining the tracts
surrounding a single coronal slice and second looking at all tracts
passing through the corpus callosum. We seed each algorithm mul-
tiple times in voxels at the intersection of the mid-sagital plane
and the corpus callosum. To explore branchings found using the
proposed technique, we considered a component to be branching
if it was separated from the primary component by less than 40°
with k > 0.6. Similarly, with sharpened spherical harmonics, we
considered it a branch if we found additional maxima over the
same range. We terminated fibers when the general fractional
anisotropy of the estimated signal (std/rms) fell below 0.1. While
such heuristics are somewhat arbitrary, we found little qualitative
difference in adjusting these values.

To demonstrate the flexibility of the proposed filtering strategy
with respect to model choice, we use both the two-Watson fiber
model (Eq. (6)) and the three-Watson fiber model (Eq. (7)). While
this introduced differences in the quantity of branchings detected,
we found that using either model resulted in generally finding the
same pathways.

For the first experiment, Fig. 9 shows tracts originating from
within a few voxels intersecting a particular coronal slice. For a ref-
erence backdrop, we use a coronal slice showing the intensity of
fractional anisotropy (FA) placed a few voxels behind the seeded
coronal position. Keeping in mind that these fibers are intersecting
or are in front of the image plane, this roughly shows how the fi-
bers navigate the areas of high anisotropy (bright regions). Similar
to the results in Descoteaux et al. (2009) and Schultz and Seidel
(2008). Fig. 9b shows that sharpened spherical harmonics only pick
up a few fibers intersecting the U-shaped callosal radiata. In con-
trast, our proposed method traces out many pathways consistent
with the apparent anatomy using either the two-fiber or three-fi-
ber model. To emphasize transcallosal tracts, we color as blue

d A\
\ L.

(d) Filtered three-Watson

Fig. 9. Filtered tractography picks up many fiber paths consistent with the underlying structures. Both single-tensor streamline and sharpened spherical harmonics are
unable to find the majority of these pathways. Fibers existing +22 mm around the mid-sagittal plane are indicated in blue. Seed region indicated in yellow. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Filtered two-Watson

(b) Filtered three-Watson

Fig. 10. Closeup of upper right in Fig. 9c and d.

those fibers exiting a corridor of 22 mm around the mid-sagittal
plane. Fig. 10 provides a closer inspection of Fig. 9c and d where, to
emphasize the underlying anatomy influencing the fibers, we use
as a backdrop the actual coronal slice passing through the voxels
used to seed this run. Such results are obtained in minutes in our
current Matlab implementation. At each step, the cost of recon-
structing the signal for few sigma points approaches the cost of a
few iterations of weighted least-squares estimation of a single
tensor.

For the second experiment, Fig. 15 shows a view of the whole
brain to see the overall difference between the different methods.
Here again we emphasize with blue the transcallosal fibers found
using the proposed filter. Comparing Fig. 15¢ and d we see several
regions that appear to have different fiber density using the two
models. This suggests that incorporating model selection into fil-
tered approaches may have a significant effect. To show the various
pathways infiltrating the gyri, Fig. 11 provides a closeup of the
frontal lobe from above (without blue emphasis).

(a) Filtered two-Watson

(b) Filtered three-Watson

Fig. 11. Closeup of frontal fibers in Fig. 15c and d viewed from above.

Next we examined fibers passing through the internal capsule
to trace out the pathways reaching up into the primary motor cor-
tex at the top of the brain as well as down into the hippocampal
regions near the brain stem. Fig. 12 shows frontal views for each
technique with seeding near the cerebral peduncles (blue). Fig. 14
shows this same result from a side view where we can see that
the filtered approach picks up the corticospinal pathways. Notice
that the two-Watson model picks up the temporopontine and
parietopontine tracts and the three-Watson model further reveals
the occipitopontine pathways, another indication that the chosen
fiber model often affects the results. As reported elsewhere (Beh-
rens et al., 2007; Qazi et al., 2008), single-tensor tractography fol-
lows the dominant corticospinal tract to the primary motor
cortex. The same pathways were also found with spherical
harmonics.

(a) Single-tensor (b) Spherical harmonics

(c) Filtered two-Watson

(d) Filtered three-Watson

Fig. 12. Frontal view with seeding in the internal capsule (blue). While both single-
tensor and spherical harmonics tend to follow the dominant corticospinal tract to
the primary motor cortex, the filtered approach follows many more pathways. Seed
region indicated in yellow. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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(c) Filtered two-Watson (d) Filtered three-Watson

Fig. 13. View from above showing cortical insertion points for each method. FA
backdrop is taken near the top of the brain. The filtered approach shows more
lateral insertions compared to single-tensor and spherical harmonic tracts.

Fig. 13, shows a view from above where we use a transverse FA
image slice near the top of the brain as a backdrop so we can focus
on the fiber endpoints. From this we can see how each method
infiltrates the sulci grooves, and specifically we see that the filtered
method is able to infiltrate sulci more lateral compared to single-
tensor tractography.

Note that in the region of intersection between the transcallosal
fibers, the corticospinal, and the superior longitudinal fasciculus,
the partial voluming of each of these pathways leads the filter to
report several end-to-end connections that are not necessarily
present, e.g. fibers originating in the left internal capsule do not
pass through this region, through the corpus callosum and then in-
sert into the right motor cortex. Many of the lateral extensions are
callosal fibers that are picked up while passing through this junc-
ture. It is our hope that such connections may be avoided with
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(c) Filtered two-Watson

the introduction of weighted mixtures, alternative filter formula-
tions, or different heuristic choices in the algorithm.

4. Conclusion

Studies involving deterministic tractography rely on the under-
lying model estimated at each voxel as well as the reconstructed
pathways. In this work, we demonstrated that using a causal filter
provides robust estimates of much higher accuracy than indepen-
dent estimation techniques. While the model we employed has
been introduced previously (Rathi et al., 2009), we primarily fo-
cused on the optimization technique used to estimate that model.
Framing that estimation within a causal filter allowed us to apply a
standard technique for nonlinear estimation.The proposed ap-
proach gives significantly lower angular error (5-10°) in regions
with fiber crossings compared to using sharpened spherical har-
monics (15-20°), and it is able to reliably resolve crossings down
to 20-30° compared to spherical harmonics which reaches only
down to 50-60°.

We believe that exploring both alternative models and filtering
techniques will provide more accurate and comprehensive infor-
mation about neural pathways and ultimately enhance non-inva-
sive diagnosis and treatment of brain disease.
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(d) Filtered three-Watson

Fig. 14. Side view with seeding in the internal capsule (yellow). Filtered tractography finds many insertions into cortical regions of the parietal and occipital lobes. Seed region
indicated in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(a) Single-tensor
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|

(b) Spherical harmonics

(c) Filtered two-Watson

(d) Filtered three-Watson

Fig. 15. Tracing fibers originating from the center of the entire corpus callosum with views from above (top rows) and front-to-back (bottom rows). The proposed filtered
tractography is able to find many of the lateral projections (blue) while single-tensor is unable to find any and few are found with sharpened spherical harmonics. Seed region
indicated in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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