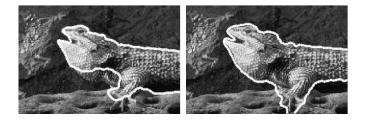
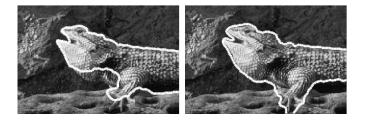
A Graph Cut Approach to Image Segmentation in Tensor Space

James Malcolm Yogesh Rathi Allen Tannenbaum

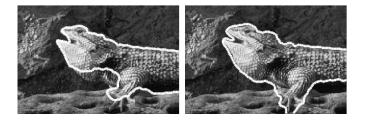
School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia malcolm@gatech.edu



The standard graph cut image segmentation technique naturally extends to richer tensor feature spaces for better segmentations than simply gray-scale intensity or color.



Tensor feature space and structure



- Tensor feature space and structure
- Graph cut segmentation

Tensors Structure of Tensor Space Graph cut segmentation

Outline

2 Background

Tensors

- Structure of Tensor Space
- Graph cut segmentation
- 3 Putting it all together
 - Algorithm

Results

So what are tensors?

So what are tensors?

• Symmetric positive-definite matrices

So what are tensors?

- Symmetric positive-definite matrices
- Capture structural information

Tensors Structure of Tensor Space Graph cut segmentation

Examples:

Examples:

Structure tensor from smoothed image derivatives

$$\mathbf{T} = \mathcal{K}_{\rho} * [\mathcal{I}_{x} \ \mathcal{I}_{y}]^{\mathsf{T}} [\mathcal{I}_{x} \ \mathcal{I}_{y}] = \begin{pmatrix} \mathcal{K}_{\rho} * \mathcal{I}_{x}^{2} & \mathcal{K}_{\rho} * \mathcal{I}_{x} \mathcal{I}_{y} \\ \mathcal{K}_{\rho} * \mathcal{I}_{x} \mathcal{I}_{y} & \mathcal{K}_{\rho} * \mathcal{I}_{y}^{2} \end{pmatrix}$$

Examples:

Structure tensor from smoothed image derivatives

$$\mathbf{T} = K_{\rho} * [\mathcal{I}_{x} \ \mathcal{I}_{y}]^{\mathsf{T}} [\mathcal{I}_{x} \ \mathcal{I}_{y}] = \begin{pmatrix} K_{\rho} * \mathcal{I}_{x}^{2} & K_{\rho} * \mathcal{I}_{x} \mathcal{I}_{y} \\ K_{\rho} * \mathcal{I}_{x} \mathcal{I}_{y} & K_{\rho} * \mathcal{I}_{y}^{2} \end{pmatrix}$$

Structure tensor across color channels

$$\mathbf{T} = \sum_{i=1}^{N} \left(K_{\rho} * [\mathcal{I}_{x}^{i} \ \mathcal{I}_{y}^{i}]^{T} [\mathcal{I}_{x}^{i} \ \mathcal{I}_{y}^{i}] \right)$$

Examples:

.

Structure tensor from smoothed image derivatives

$$\mathbf{T} = K_{\rho} * [\mathcal{I}_{X} \ \mathcal{I}_{y}]^{\mathsf{T}} [\mathcal{I}_{X} \ \mathcal{I}_{y}] = \begin{pmatrix} K_{\rho} * \mathcal{I}_{X}^{2} & K_{\rho} * \mathcal{I}_{X} \mathcal{I}_{y} \\ K_{\rho} * \mathcal{I}_{X} \mathcal{I}_{y} & K_{\rho} * \mathcal{I}_{y}^{2} \end{pmatrix}$$

Structure tensor across color channels

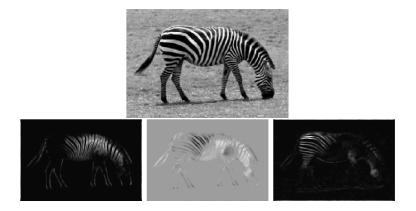
$$\mathbf{T} = \sum_{i=1}^{N} \left(\mathcal{K}_{\rho} * [\mathcal{I}_{x}^{i} \ \mathcal{I}_{y}^{i}]^{T} [\mathcal{I}_{x}^{i} \ \mathcal{I}_{y}^{i}] \right)$$

Incorporating intensity

$$\mathbf{T} = K_{\rho} * [\mathcal{I} \mathcal{I}_{x} \mathcal{I}_{y}]^{T} [\mathcal{I} \mathcal{I}_{x} \mathcal{I}_{y}].$$

Tensors Structure of Tensor Space Graph cut segmentation

Tensors Structure of Tensor Space Graph cut segmentation



 $\mathcal{I}_x^2 \quad \mathcal{I}_x \mathcal{I}_y \quad \mathcal{I}_y^2$

Tensors Structure of Tensor Space Graph cut segmentation

Outline

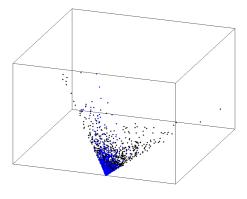
2 Background

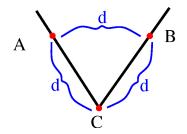
- Tensors
- Structure of Tensor Space
- Graph cut segmentation
- 3 Putting it all together
 - Algorithm

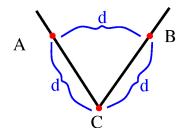
Results

Tensors Structure of Tensor Space Graph cut segmentation

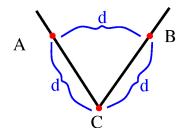
Conical surface structure



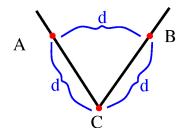




d(A, B) =



$$d(A,B) = d(A,C) + d(C,B) = 2d$$



$$d(A,B) = d(A,C) + d(C,B) = 2d \neq d$$

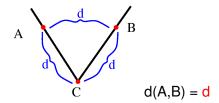
Why do we care?

• Non-parametric estimates of $P(\mathcal{I}|\mathcal{F})$ and $P(\mathcal{I}|\mathcal{B})$

- Non-parametric estimates of $P(\mathcal{I}|\mathcal{F})$ and $P(\mathcal{I}|\mathcal{B})$
- Fast Gauss Transform uses Euclidean L₂ norm

- Non-parametric estimates of $P(\mathcal{I}|\mathcal{F})$ and $P(\mathcal{I}|\mathcal{B})$
- Fast Gauss Transform uses Euclidean L₂ norm

- Non-parametric estimates of $P(\mathcal{I}|\mathcal{F})$ and $P(\mathcal{I}|\mathcal{B})$
- Fast Gauss Transform uses Euclidean L₂ norm



Tensors Structure of Tensor Space Graph cut segmentation

What do we get?

Tensors Structure of Tensor Space Graph cut segmentation

What do we get?

Tensors Structure of Tensor Space Graph cut segmentation

What do we get?

Tensors Structure of Tensor Space Graph cut segmentation

Problem:

Problem:

Want to use Fast Gauss Transform

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Solution:

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Solution: Map to Euclidean space

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Solution: Map to Euclidean space

Introduction Tensor Background Structu Putting it all together Graph

Tensors Structure of Tensor Space Graph cut segmentation

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Solution: Map to Euclidean space

Log map onto tangent space

Introduction Tensors Background Structur Putting it all together Graph c

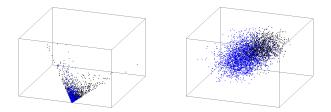
Iensors Structure of Tensor Space Graph cut segmentation

Problem:

- Want to use Fast Gauss Transform
- Tensor norms computationally intensive

Solution: Map to Euclidean space

Log map onto tangent space



Outline

2 Background

- Tensors
- Structure of Tensor Space
- Graph cut segmentation
- 3 Putting it all together
 - Algorithm

Results

Standard binary graph cut energy formulation:

$${m E}({m A}) = \sum_{{m
ho} \in {\mathcal I}} {m R}_{m
ho}({m A}_{m
ho}) + \lambda \sum_{({m
ho},q) \in {\mathcal N}} {m B}_{({m
ho},q)}$$

Standard binary graph cut energy formulation:

$${m {m E}}({m A}) = \sum_{{m
ho} \in {\mathcal I}} {m R}_{m
ho}({m A}_{m
ho}) + \lambda \sum_{({m
ho},q) \in {\mathcal N}} {m B}_{({m
ho},q)}$$

$$R_{p}(\mathcal{F}) = -\ln P(\mathcal{I}_{p}|\mathcal{F})$$
 $R_{p}(\mathcal{B}) = -\ln P(\mathcal{I}_{p}|\mathcal{B})$

Standard binary graph cut energy formulation:

$${m {m E}}({m A}) = \sum_{{m
ho} \in {\mathcal I}} {m R}_{m
ho}({m A}_{m
ho}) + \lambda \sum_{({m
ho},q) \in {\mathcal N}} {m B}_{({m
ho},q)}$$

$$R_{p}(\mathcal{F}) = -\ln P(\mathcal{I}_{p}|\mathcal{F})$$
 $R_{p}(\mathcal{B}) = -\ln P(\mathcal{I}_{p}|\mathcal{B})$

$$B_{(
ho,q)} = \exp\left(rac{-\|\mathcal{I}_{
ho}-\mathcal{I}_{q}\|^{2}}{2\sigma^{2}}
ight)rac{1}{\|
ho-q\|}$$

Tensor version:

$$E(A) = \sum_{oldsymbol{
ho} \in \mathcal{I}} R_{oldsymbol{
ho}}(A_{oldsymbol{
ho}}) + \lambda \sum_{(oldsymbol{
ho},oldsymbol{q}) \in \mathcal{N}} B_{(oldsymbol{
ho},oldsymbol{q})}$$

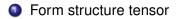
$$R_{\rho}(\mathcal{F}) = -\ln P(\mathbf{T}_{\rho}|\mathcal{F})$$
 $R_{\rho}(\mathcal{B}) = -\ln P(\mathbf{T}_{\rho}|\mathcal{B})$

$$B_{(p,q)} = \exp\left(rac{-\|\mathbf{T}_p-\mathbf{T}_q\|^2}{2\sigma^2}
ight)rac{1}{\|p-q\|}$$

Outline

- 2 Background
 - Tensors
 - Structure of Tensor Space
 - Graph cut segmentation
- Outting it all together
 - Algorithm
 - Results

Algorithm Results



Form structure tensor

2 Map to Euclidean tangent plane

Form structure tensor

- 2 Map to Euclidean tangent plane
- Setimate $P(\mathbf{T}|\mathcal{F})$ and $P(\mathbf{T}|\mathcal{B})$ from initialization

- Form structure tensor
- Image A set the set of the set
- Setimate $P(\mathbf{T}|\mathcal{F})$ and $P(\mathbf{T}|\mathcal{B})$ from initialization
- Graph cut segmentation

Outline

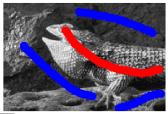
- 2 Background
 - Tensors
 - Structure of Tensor Space
 - Graph cut segmentation
- Outting it all together
 - Algorithm

Results

Algorithm Results

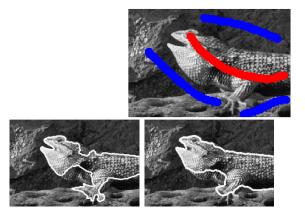
Algorithm Results

Algorithm Results



Algorithm Results

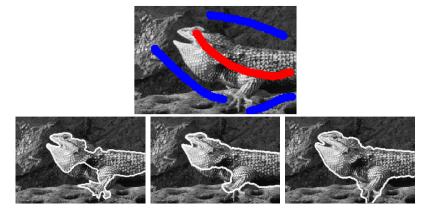
Intensity alone



James Malcolm Yogesh Rathi Allen Tannenbaum A Graph Cut Approach to Image Segmentation in Tensor Space

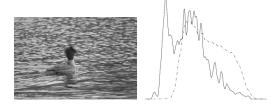
Algorithm Results

Intensity alone

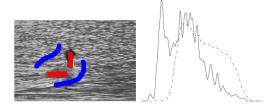


James Malcolm Yogesh Rathi Allen Tannenbaum A Graph Cut Approach to Image Segmentation in Tensor Space

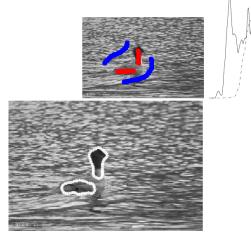
Algorithm Results



Algorithm Results

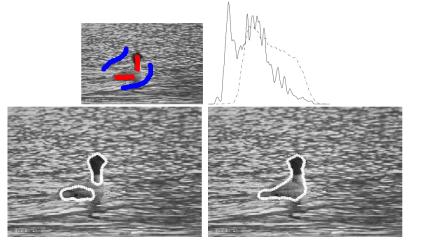


Algorithm Results



Algorithm Results

Intensity alone



James Malcolm Yogesh Rathi Allen Tannenbaum A Graph Cut Approach to Image Segmentation in Tensor Space

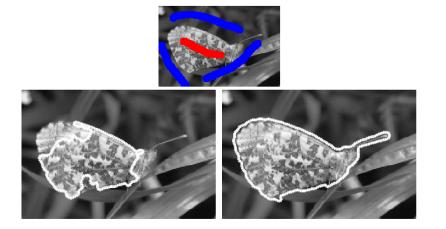
Algorithm Results

Algorithm Results

Algorithm Results

Algorithm Results

Ignoring conical structure

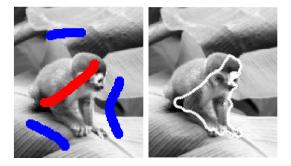


James Malcolm Yogesh Rathi Allen Tannenbaum A Graph Cut Approach to Image Segmentation in Tensor Space

Algorithm Results

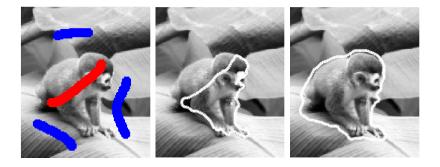
Algorithm Results

Algorithm Results



Algorithm Results

Ignoring conical structure



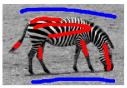
James Malcolm Yogesh Rathi Allen Tannenbaum A Graph Cut Approach to Image Segmentation in Tensor Space

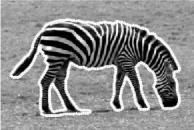
Algorithm Results

Validation, incorporate intensity

Algorithm Results

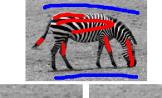
Validation, incorporate intensity

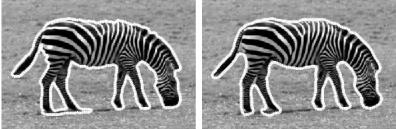




Algorithm Results

Validation, incorporate intensity





James Malcolm Yogesh Rathi Allen Tannenbaum A Graph Cut Approach to Image Segmentation in Tensor Space

Algorithm Results

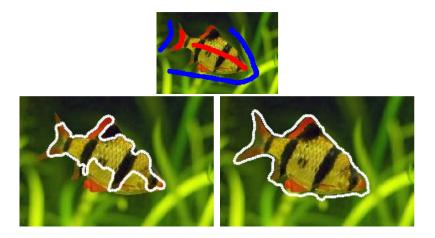
Using color

Algorithm Results

Using color

Algorithm Results

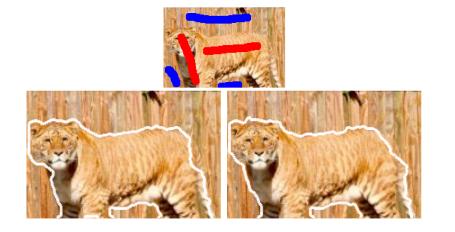
Using color



Map to identity (Log-Euclidean space)

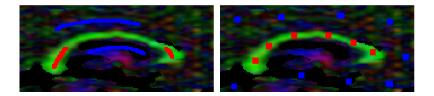
Map to identity (Log-Euclidean space)

Map to identity (Log-Euclidean space)



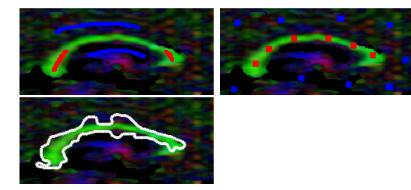
Algorithm Results

Diffusion tensor MRI



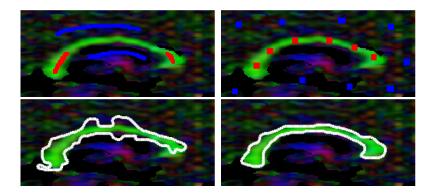
Algorithm Results

Diffusion tensor MRI



Algorithm Results

Diffusion tensor MRI



Algorithm Results

Tensor space

- Tensor space
- Riemannian structure

- Tensor space
- Riemannian structure
- Map to Euclidean tangent space

- Tensor space
- Riemannian structure
- Map to Euclidean tangent space
- Estimate distributions

- Tensor space
- Riemannian structure
- Map to Euclidean tangent space
- Estimate distributions
- Graph cut segmentation

Algorithm Results

Questions?