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Abstract. Diffusion tensor imaging has made it possible to evaluateotigani-
zation and coherence of white matter fiber tracts. Hencegsitieen used in many
population studies, most notably, to find abnormalitiescinizophrenia. To date,
most population studies analyzing fiber tracts have usedglestensor as the
local fiber model. While robust, this model is known to be arpfitan regions
of crossing or branching pathways. Nevertheless, thetaffaasing better alter-
native models on population studies has not been studiesig®al of this paper
is to compare white matter abnormalities as revealed bytémeer and single-
tensor models. To this end, we compare three different nsgob the brain from
two populations: schizophrenics and normal controls.iRieary results demon-
strate that regions with significant statistical differeimdicated using one-tensor
model do not necessarily match those using the two-tensdehamd vice-versa.
We demonstrate this effect using various tensor measures.

1 Introduction

Diffusion tensor imaging (DTI) has become an establishetiftor investigating tissue
structure, and many studies have used it to understandfeéisebf aging or disease.
Using this imaging technique, neuroscientists wish to askitegions of tissue compare
or how well-defined various connections may be. For exangdeeral DTI studies
have indicated a disturbance in connectivity betweendiffebrain regions, rather than
abnormalities within any specific region as responsibletiercognitive dysfunctions
observed in schizophrenid][ For such studies, the quality of the results depends on
the accuracy of the underlying model.

The most common local fiber model used in population studiessingle diffusion
tensor which provides a Gaussian estimate of diffusiomdaigon and strength. While
robust, this model can be inadequate in cases of mixed filesepce or more complex
orientations, and so various alternatives have been intedlincluding mixture models
[2,3,4,5] as well as nonparametric approach&$7,8,9]. Probabilistic techniques have
also been developed in connectivity studigg 11].

Despite this wide selection of available models, nearlypalbulation studies thus
far have been based on the single-tensor model, and as ssdéimjiortant to examine
the limits of this model and potential impact this has. Tatstsome works have fo-
cused on the effects of noise and acquisition schemes arddand nontrivial effects
on estimated fractional anisotropy (FA) and other quaegifl2,13,14]. Beyond such
factors, it is known that in regions containing crossinganfing pathways the single-
tensor model itself provides a poor fit that results in low&( E5,3]. It is estimated that



as much as one third of white matter may contain such putéltiee populations11].
It is here that this present study focuses.

In forming studies, there are several approaches for camppatient populations.
For example, voxel-based studies examine tissue chasditierin regions of inter-
est [16]. In contrast, tract-based studies incorporate the resiltractography to use
fiber pathways as the frame of referend&,18], and several studies have demon-
strated the importance of taking into account local fluétuest in estimated diffusion
[19,20,21,22,23].

To date, many studies have focused on schizophrenia, bdinitiegs vary. For
example, the review by Kubiclgt al. [1] cites one voxel-based study where the genu
of the corpus callosum has significant differences and a&ndtiat finds nothing. A
recent tract-based study showed statistical differenoesmly in the genu of the corpus
callosum but also in regions known to have fiber crossingskaadchings 22]. The
question then arises, as to whether the same effect can hég&etter models able to
resolve crossings and branchings? Is the population diffar simply a result of poor
modeling? We seek to answer such questions in this presekt wo

2 Our contributions

In this paper, we make a first attempt towards confirming oatang doubts regarding
the results reported using the single-tensor model. Speltyfi we compare various
tensor metrics as estimated using two-tensor and singkstemodels on a number
of fiber tracts generated using our recently proposed metthiodeterministic two-
tensor tractography2@]. Hence we are continuing this work with a focus on how such
techniques will begin affecting clinical studies. It is iontant to note that this is the
first time the same population study has been performed tsmdifferent underlying
models.

We begin with synthetic experiments to examine the diffeesin reported FA us-
ing single- and two-tensor models. We find that the singhsde model consistently
underestimates the FA by as much as 30% in crossing regidifeeence considered
statistically significant in many studies. Then, we lookaitmections between three dif-
ferent cortical regions of the brain and show that staastiroup differences reported
using the single-tensor model do not necessarily showrdifiges using the two-tensor
model and vice-versa. Specifically, the regions known tehmanchings and crossings
reports significant differences in the single tensor stbdynot in the two-tensor study,
and conversely, certain regions which show subtle abndtigglsing the two-tensor
method are lost in the single-tensor model. Thus, model eney have contributed to
the statistical differences found in previous DTI studies.

3 Method

In this paper, we form a tract-based study using the twoetetractography method
described in24], and we compare this against the results from a singlestensdel.
Section 3.Iprovides the necessary background on modeling the measigreal using
tensors and defines the specific two-fiber model employedisnstindy. Section 3.2
looks at the seed regions and the resulting fibers connesiciyhemisphere and finally
how these fibers are compared within a tract-based cooedéyatem.



(a) Seed regions  (b) Caudalmiddle  (c) Precentral (d) Superiorfrontal
frontal

Fig. 1: For each patient, we seed in three different cortical regimd select only those fibers
that connect the hemispheres.

3.1 Modeling local fiber orientations

In diffusion weighted imaging, image contrast is relatedhe strength of water dif-
fusion, and our goal is to accurately relate these signalntanderlying model of
putative fibers. At each image voxel, diffusion is measuled@a set of distinct gra-
dients,uy, ..., u,, € S* (on the unit sphere), producing the corresponding signal,
[51,...,8m |1 € R™. The single-tensor signal model is expressedas, soe‘b“iTD“i,
wheresy is the baseline signal intensityjs an acquisition-specific constant, abds
the tensor representing a diffusion pattern.

In this study, our two-tensor model is a mixture of two equralkeighted compo-
nents. This choice is guided by several previous studieswtound two-component
models to be superior compared with single-component ns@dgl= 1000 [3,4,11]. As
demonstrated inZ4], while assuming equally-weighted compartments limits flex-
ibility of the model, we have found that this allows a robustiraate of a reduced set
of parameters and produces sufficient tractographyKeel) beyond that obtainable
with the single-tensor model. An additional assumptiom&t the shape of each tensor
is ellipsoidal,i.e. there is one dominant principal diffusion directinnwith eigenvalue
A1 and the remaining orthonormal directions have equal eeng, = A3 (as in
[4]). These assumptions leave us with the following two-teisggnal model:

8 = %efbuiTDlui + s?oefbu;ngui’ (1)
where tensor$);, D, are each expressible &= A;mm” + X, (pp” + qq”) , with
m, p, q € S? forming an orthonormal basis aligned to the principal diftun direction
m. The free model parameters are tham, A1, Aa1, mo, A\15, andia,.

Several scalar measures have been proposed for quantiyiiogis aspects of ten-
sors, and in this study we focus on fractional anisotropy)(Rface, and the ratio
between eigenvalues{/);). Since these measures are defined for the single-tensor
model, when computing their value on the two-tensor modelrecord the value from
the tensor most aligned with the local fiber tangent.

3.2 Tractography and fiber comparison

For each patient, we have manually delineated corticabregirom which we choose
three regions covering the frontal and parietal lobe. FermatientFig. 1 shows these



(a) Single-tensor. (b) Two-tensor and FA curves

Fig. 2: Single-tensor tractography finds no connections. Twoetepasses through the region of
crossing(red/yellow boundary)FA curves show drop in single-tensor EBlue) in this region
(indicated by dashed white line)

seed regions and the resulting fibers that connect each pleenes Specifically, the
regions are theuperiorfronta) precentra] andcaudalmiddle frontal

We followed the deterministic fiber tracking procedure2d][ We begin by seeding
each algorithm several times in each voxel of the seed regimexplore branchings
found using the proposed technique, we considered a comptmbe branching if it
was separated from the primary component by less th&nvith FA>0.15. We ter-
minated fibers when either the general fractional anisgtf8pof the estimated signal
fell below 0.1 or the primary component FA fell below 0.15. Nghsuch parameters
are heuristic in nature and could be examined in their owmt rige found the resulting
tractography to be sufficient for the purposes of this work.

It is known that single-tensor streamline tractographyriy @ble to trace out the
dominant pathways forming the U-shaped callosal radiasonprevious tract-based
studies looking at the corpus callosum have been restriotealy studying portions
of the corpus radiata, typically focusing on the splenum gawu [L9,20,2322]. One
of the main advantages of using the multi-tensor filteringrapch in R4] is that it is
one of the few techniques capable of following, not only ¢hésminate pathways, but
also the transcallosal pathways out to the lateral gyri.@xample Fig. 2ashows that
for thecaudalmiddle frontategion, using single-tensor tractography leads to nedrly a
fibers looping back into another sulci instead of finding aogreection to the opposite
hemisphere. In contrastig. 2bdemonstrates that the filtered two-tensor approach finds
several connecting pathways. Therefore, this is the firstrgit at tract-oriented analysis
along such pathways.

Since this study focuses on comparing fiber models, we simpplyorm direct
single-tensor estimation at the same locations as we hawgemsor estimates, thus
providing an exact correspondence for averaging withir getient.Fig. 3 shows the
precentralregion and colors the same fibers with FA intensity to show étative FA
differences reported by either model.

After performing tractography, we placed fibers from eactigpé within a com-
mon coordinate system by registering the seed regions tmpla¢e. Each seed region
was registered separately. The mid-sagittal plane wasvaiically determined and
provided a common reference point for each fiber as it passeddgh the corpus cal-
losum. From this reference point, we record arc-length mpwiutward to the cortical



(a) Single-tensor FA. (b) Two-tensor FA.

Fig. 3: Two-tensor fibers overlayed with FA intensity using both mlsdred to yellow is low to
high). Both methods show high FA in the corpus callosum but sitgesor FA drops as fibers
enter the gray matter.
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Fig. 4: Estimated fractional anisotropy (FA) using single-ter®&ue)and two-tensofred) mod-
els on synthetic data with known Flashed black)The two-tensor model accurately captures
the FA across a wide range of angles and eigenvalues.

regions. The fibers of each patient being registered witlmgpl#te and having an ori-
gin, we can plot the various scalar tensor measures alosgthbilength as in other
tract-based studies. For examig. 2bshows FA as a function of arc-length for the
caudalmiddle frontategion using the single-tensor modklue)and two-tensor model
(red). Since the single- and two-tensor estimates line up exaatly correspondence
error is confined to the matching within fiber bundles and agnpatients—not across
models which was our focus here. As Ril]27], statistical significance was tested as a
function of arc-length.

4 Results

We first use experiments with synthetic data to validate edhiique against ground
truth. By varying crossing angle or eigenvalues used to tcocisvoxels, we confirm
that our approach accurately estimates the fractionabanjsy while using the single-
tensor model can under-estimate FA by as much as 30-488é6tibn 4.} Then, we
examine our real dataset to demonstrate the differenttsagydorted using either model
(Section 4.2

4.1 Synthetic validation

Following the experimental method of generating synthasi@ found in §,6], we gen-
erated synthetic MR signals accordingdq. 1using eigenvalues determined from out
in vivodata. We use 81 gradient directions uniformly spread on éneisphere and Ri-
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Fig. 5: Average of various tensor metrics as a function of arc-lengtng single-tensdblue)and
two-tensoi(red) models comparing normal patierfsolid lines)with schizophrenic patien{slot-
ted lines) Rows show FA, trace, eigenvalue ratio. Areas of statiksigmificance are indicated
along the bottonfblack dashes indicate 95% confidend&hile each metric generally indicates
the same area of significan@eoking down columnsthe areas of significance vary with each
model(comparing red and blue) .

cian noise (SNRx 10 dB) based on the unweighted signal. Using these we cabstiu
a set of two-dimensional fields through which to navigatelevestimating FA.

Fig. 4 shows the resulting FA estimates using direct single-teastimation(blue)
and filtered two-tensor estimatigred). As expectediig. 4ademonstrates that cross-
ing regions can lead to single-tensor FA estimates as mu@iBdswer than expected.
In Fig. 4bwe look at both techniques accurately estimating the FA ahgle tensor
as we adjust the second eigenvalde iy Eq. 1). However Fig. 4cand4d demonstrate
a consistent drop in FA under the same range of eigenvaliés eXperiment demon-
strates that we may expect as much as 0.2 to 0.3 drop in FA ionggf crossing and
branching.

4.2 Invivo model comparison

We tested our approach on a human brain scans using a 3-Taglseito collect 51
diffusion weighted images on the hemisphere at a voxel dize66 x 1.66 x 1.7 mn?
and withb = 900 s/mnT in addition to eight baseline scans. Included in this stugy a
17 normal controls and 22 schizophrenics; however, sinteomnecting fibers were



not found in all patients for all regions, not all patientse/eepresented in each regional
group. Below are the sizes for each region and group.

Caudalmiddle frontal ~ Precentral  Superiorfrontal
Normals 16 17 8
Schizophrenics 20 22 17

For each region and patient grolfig. 5shows the resulting average curves using the
single-tensoi(blue) and two-tensofred) models. Along the bottom of each plot we
indicate local regions of statistical significance betwgsesups. InFig. 5awe see that
the two-tensor model detected a region of significance a@ibthree measures whereas
the single-tensor model found only one small portion of ihahe trace. Ag-ig. 2b
indicates, this a region known to contain branching andsings hence the single-
tensor FA drop. Thus, we suspect that the single-tensor wabl@ to provide a tight
enough fit in this region to detect the difference found ushegtwo-tensor model. In
Fig. 5bwe see that the single-tensor model found a slight area againregion of
known branching, yet the two-tensor model found nothingzitn 5cwe see the most
reported differences and further we see those differereqasrted using both models.
We note that these differences may in part be due to thevelsitie of each population
supporting this region. In summary, among these three nsgige see areas where each
model either confirmed or denied the findings of the other.

5 Conclusion

There are many challenges in building automatic framewfwkdetecting population
differences. By repeating the same tract-based study amaig only the model, we
have demonstrated that the ultimate findings may vary. 8palty, our results indicate
that some areas reported as significant using the singtetemodel may in fact be due
to poor modeling at branchings or crossings.

While our results are preliminary, we believe that explgiioth alternative models
and methods of reconstructing pathways will provide mooeigate and comprehensive
information about neural pathways and ultimately enharmeeinvasive diagnosis and
treatment of brain disease.

Considering future work, we expect that further model dipancies may be re-
vealed with more accurate fiber and patient correspond¢@&@%?] or functional rep-
resentations43].
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