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Abstract—Many techniques for tracking based on gradient
descent cannot follow objects as they undergo large movemisn
or deformation. On the other hand, multi-hypothesis trackes
capable of handling such behavior are computationally expesive.
The standard graph cut technique offers a middle ground,
quickly capturing objects anywhere in the image; however,
because of its global nature, it is prone to capturing outlyng
areas similar to the object of interest. This paper proposes novel
method to constrain the standard graph cut technique to regins
of interest for tracking multiple interacting objects in near real-
time. For each object, we introduce a penalty based upon diahce

Fig. 1.
intensity: without distance penalty and applying distapeealty to track one
or two players(left to right). Without the distance penalty, multiple non-
intended regions were captured.

Tracking two interacting soccer players among athefr similar

from a region of interest. This results in a segmentation biaed to
this area. Also, we demonstrate the use of a track point filtefor
predicting the location of the object in each frame. The disance
penalty is then centered at this location and adaptively sdad
based on prediction confidence. We demonstrate tracking inrgy-
scale and color videos.

state spaces, have been demonstrated in the space of infinite
dimensional curves; however, this method is computatignal
complex and time consuming [10].
Graph cut techniques have received considerable attesation
robust methods for energy minimization. Despite their sgsc
for such key vision tasks as image segmentation and stereo
|. INTRODUCTION disparity, graph cuts have received little attention witspgect
RACKING an object in video has been the focus of muct® tracking. This is largely due to the global segmentations
research, and the problems accompanying this key tdiey produce which tend to catch unintended regions that are
are well-known. For example, the object might have weddtmilar to the object of interest. For example, the standard
edges causing segmentations to leak out into the surrognd@iaph cut technique for image segmentation finds regiorts wit
area, the object may be near other objects of similar intenshigh likelihood given intensity priors [11]. Figure 1 shoas
causing the tracking of unintended objects, or the objegt maxample where there are multiple regions of similar intignsi
suddenly move outside the algorithm’s region of detectiomhe standard graph cut algorithm captures all of these megio
Multi-object tracking raises additional concerns invalyithe and so post-processing is required to filter out those region
interaction among objects. that are not part of the object. However, this same feathes, t
Various methods have been proposed to overcome th@ecapturing such regions anywhere in the image, naturally
difficulties. To keep segmentations from spilling over aije addresses the problem of large object movements. The graph
boundaries, learned shape priors constrain segmentatiorcut will find the object even if it moved far relative to its
a set of possible shapes [1]-[3]. When adjacent regions &pgation in the previous frame. The problem is now one of
similar to the object of interest, multiple hypothesis kmxs constraining the graph cut to capture only the objects of
can keep track of each region while for each frame determiniinterest, even if they made large movements, yet ignoring
the most likely region based on some criteria [4]-[6]. Tether regions of similar intensity. Hence, a spatial caistr
simultaneously segment multiple objects, techniques haee is necessary.
developed to take into account the interaction among abject Several techniques have used graph cuts for segmentation
[7]. in visual tracking applications. In [12] the segmentatien i
Methods based on gradient descent allow tracking hightynstrained to a narrow band. For each frame, successiph gra
deformable objects, but cannot track large movements sirag¢ segmentations converge on a final segmentation, each
they search within a small region around the object [8pass constrained to a narrow band around the cut boundary
[9]. Such spatial motion can be reliably tracked using mesulting from the previous pass. This method is dependent
finite dimensional state space, but the reduced state spapen initial contour placement and requires repeated cuts
representation then restricts the possible shape defmmsat on this reduced domain. Furthermore, no motion model is
Recently, particle filters, typically used with finite dinsonal assumed thus making the tracker highly dependent on the
previous segmentation. In [13] the authors use one graph
cut for each frame to estimate both the optical flow and
object position despite changes in illumination. Howesarce
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tion 11l describes the distance penalty constraining segeie
tion. Section IV defines the filter used to predict the object

centroid, and Section V integrates the filter predictioroerr
|Image|—»| Graph-cut measureme|m—¢ with the distance penalty. Next, in Sections VI and VI, we
T @— present our algorithm and experiments. Finally, in Sectitih
’_,| Centroid predictiodz—f we summarize our work and outline some possible future
research directions.

Fig. 2. The proposed closed-loop system. For each new invageredict
each object centroid and use graph-cut segmentation toungeaach object Il. GRAPH CUTS

centroid. The error between the two is then fed back both eotrifick-point In thi ti briefl tli th tandard lti-label

filter and to the segmentation for adaptively scaling therisasf attraction. n this sec IOI?, we brietly ou 'ne. € stanaard mulu-labe
graph cut technique; for more details see [11], [14]-[171 an
the references therein.

optical flow requires the multi-label graph cut techniqué][1  Taking advantage of efficient algorithms for global min-
and the graph proposed has such dense neighborhoods,Ctesolutions, we cast the energy-based image segmentation
current approach requires about one minute per frame. Aldgrmulation in a graph structure of which the min-cut cor-
due to the local nature of optical flow, the technique canntSPonds to a globally optimal segmentation. Evaluated for
handle large movements. an assignmentd of each pixel to a region labet € R,

In addition to tracking, work has been done to constraftich energies are typically constructed as the sum of a data
segmentation based on a user selected region. The workJof [d§Pendentterm and a term for smoothness. The data dependent
begins with a rectangle bounding the object, while the wdrk &M evaluates the penalty for assigning a particular pixel
[16] uses a narrow band. Both perform successive graph @ugiven label. The smoothness term evaluates the penalty for
segmentations incorporating additional user interactigih ~ 2SSigning two neighboring pixels to different regions, a
each pass. Neither method is targeted towards tragiénge, boundary discontinuity. These two terms may be th_ought of
but instead seeks the “best” segmentation. In these woakd, haS @ regional term and a boundary term, often weighted by
constraints confine the segmentation within a user-selects > 0 for relative influence:

region and multiple graph cuts are performed. Additionally E(A) — Ro(A) + A B 1
none of these methods has been generalized to simultageousl| 4) z;Q »(4p) (Mz);N (p.9)> @)
segment multiple unique objects. In our work, the object A A£A,

may be found a given distance from the predicted centr%erep andq are pixels in the image domaf®, and\ is the

_dependlng on the scale of the distance penalty, Segmemtalig; o 411 unordered neighborhood pixel pairs. The choice of
is performed only once per frame, and the formulation handl

S ; . ﬁeighborhood size and structure has a large influence on the
multiple interacting objects.

.. solution as smaller neighborhoods tend to introduce attfa
The method presented here makes several contrlbutlonsiltg]

the field of visual tracking. First, we incorporate an adapti
distance penalty into the graph cut algorithm biasing segme

tations toa region likely to contain t_he gi\_/en object. _Setonfor each region label € R, eg. background, first object,
we adaptively scale the surface of this basin of attractiset second object. Figure 3 illustrates such a constructiorafor

upon performance error. Third, we demonstratg hovy th_e FnUI§-x3 image with two region labels. The data dependent term
label graph cut algorithm naturally handles multiple iating is implemented by connecting each pixel to these extra nodes

objects. Further, we show how to naturally integrate a [mced'\N-th non-neaative edae wei representing the penalt
tion filter in the proposed framework for robust tracking. ! garv ge weights, (r) rep 'ng b Y

for assigning pixelp to the regionr. Lastly, the smoothness

The basic algorithm is as follows. First, for each objecty, is implemented by connecting each pairwise combinatio
we incorporate a distance penalty into the graph cut alyorit ¢ neighboring pixelsp, ¢) with a non-negative edge weight

to bias segmentations to a region likely to contain the dbje (».) T€Presenting the penalty for assigning pixelsand

Second, we use a filter to predict the location of that obje&tto different regions. The min-cut of this weighted graph

based on the location of the previous segmentation ande esents the segmentation that best separates the egion
moving average of the object’s velocity. The distance pgnsl oo [11], [14] for more details.

then centered at the predicted object centroid and exteamds o
ward forming a basin of attraction. Third, to further intatgr differ only in the definitions of2, and By,,,). For example,

the filter with the distance pe”a'tyv the scale _Of this d,mnin the case of the binary foreground/background segmentati
penalty, and hencg the slope Of, Its surfacg, IS adgpnvely f)‘?oblem, the authors of [11] use the negative log-likelithoo
based on the prediction error. Finally, the interaction ago of a pixel’s fit into an intensity prior to compute the regibna

objects is naturally handled as segmentation is performedweights, while intensity contrast is used in the boundampte
one cut using the standard multi-label graph cut algorithm.

To construct the graph representing this energy, each pixel
considered as a graph node in addition to an extra node

Typical applications of graph cuts to image segmentation

The system is visualized in Figure 2. R,(fg)=—-InP(Z,|f9), R,(bg) = —In P(Z,|bg),
The rest of the paper is organized as follows. Section Il B — ex (—Hzp—zq||2) 1 @)
outlines the standard graph cut segmentation framewoxk. Se () = P 20® llp—qll



Fig. 5. Without location prediction, tracking can fail whire target makes
sudden movements. Here the tracker catches a defender tergbe passes
(Ieft to right).

Fig. 3. Underlying graph construction of a 3x3 image for tlaset of two

region labels;; andr,. Each grid node represents an image pixel and ea
label has its own additional node. Each pixel's node is cotateto those of
its neighbors with weight3,, .y (red) and connected to the additional label
nodes with weightR,, (blue).

e

Fig. 4. Tracking a bear near other regions similar to its fw:distance g 6. Effect of adaptivex on tracking: non-adaptive: (top, left to right)

penalty, distance penalty with isocontours, and applying distance penaltyang adaptiven: using prediction erro(bottom, left to right). Tracking fails
(Ieft to right). Without the distance penalty, multiple non-intended @i ithout using error feedback to adaptively scale distaneeafty. Predicted
were captured. centroid is shown as a blue dot.

where [|p — ¢| is the standard., Euclidean pixel distance and center the distance penalty at this predicted locafibis.

in the image andr> = (||, — I,||*/[lp — ql[*), the average section describes integrating a general prediction ittt fhe
contrast over allp, ¢) € NV. Initialization proceeds as in [11] proposed framework while the next section, Section V, ¢etai
where the user marks regions of foreground and backgroyagorporating error feedback into the measurement.

to generate the intensity histograms for each region. To reveal the need for some form of prediction, we experi-
mented with the assumption that the object has not moved: the
IIl. DISTANCE PENALTY distance penalty is centered at the last known object positi

The standard graph cut technique is capable of findifdggure 5 shows the failure to track after the object has made a
regions matching the object located anywhere in the imag@idden move. The movement placed the object too far outside
However, by penalizing pixels based on their distance froaf the basin of attraction.
the expected location, a potential well is formed biasing- se Demonstrating the flexibility of filter choice, we employ
mentation to a region of interest. Figure 4 shows segmemtatiwo different filters, each motivated by the apparent motion
with and without such a penalty in the presence of unintendetbdels exhibited in our imagery. The first video we examined
regions similar to the object. involved the camera following a soccer player across the

The distance penalty is formed from a base mask/ field (see Figure 7). The camera alternates between a fixed
which predicts the object shape. Centering that m&skat view with the player moving across the screen and a relative
the predicted object location and assigning pixels witthia t view where the camera pans to catch up. Due to the lack of
mask zero penalty, each pixebutside the mask is assigned itdixed image features, attempts at global motion estimatiwh a
distance from the nearest masked pixgl € M, i.e. ¢(z) = camera stabilization performed poorly. Deciding not to elod
||z —m,||. Such a construction can be quickly computed withuch transient camera motion, we used a simple linear filter
the Fast Marching algorithm [19], [20]. where the predicted centroig, ; is last centroid:; projected

A simple choice for the base mask is the initial user forward by the average displacement in the past few frames:
segmentation from the first frame. For objects that quickly N
change shape from the initi'al segmentation, a mqving aeerag Gra1 = Co+ 1 Z(Ct—j — 1) 3)
of the past few segmentations may be more suitable for the N =
base mask (see Section VII and Figure 11). Several other

methods can be used for representing deformable shaps prigi€ rémaining videos feature relatively stationary tesgand

in graph cut segmentations [13], [21], [22]. so we employed a Kalman filter with an identity prediction
T model to compensate for slight camera motion.

IV. LOCATION PREDICTION

It is often the case that the object makes a large movement,
at times large enough to place it in an area of high distanceWe now have the distance penalty constraining segmentation
penalty. To overcome this problem, we predict the locaticand the filter predicting where to center this distance ggnal
of the object in each frame based on its previous locatidmut what if the filter is wrong? Figure 6 shows just such a

V. ERROR FEEDBACK



case. The object has made a sudden move outside the predid
basin of attraction.

What is needed is a way of adaptively scaling the distand
penalty based on the prediction error. In this work, we tak
the error in prediction to be the distance between the ptexdlic
¢ and actualc centroids. The distance map is then scaleq
by a(||¢ — ¢||) taken from an exponential distribution of the
prediction error

a(;v) = exp (_gc2/p2) (4) Fig. 7. Tracking two opposing players from the soccer secgieBespite
prolonged contact and occlusion, the technique is able iguely track the

where p is a user defined model parameter that determint targets. Full imaggleft) and selected cropped fram@sght).

the amount of expected object motion between frames. The

effect is that when the filter is off in its predictions of the ) ) ) )
object centroid, the distance penalty is lowered to stifitage intensity prior. We now have the new regional terms for objec

the object. After locking back onto the object, the prediati @nd background:

error decreases, and the automatically raises the distance (r) = —In P(T,|r) — B In Py(r)
penalty back up to tighten around the object. Figure 6 shows P P P
how, despite incorrectly predicted centroids, the systeabie = - P(I,|r) + B a(|¢ — c[)¢(p) (6)
to recover by adaptively widening the distance penalty. R,(bg) = —In P(Z,|bg) — 8 In P,(bg)
For the case of the linear filter (3), such a linear filter is un- = —In P(Z,|bg) )

stable under large displacements causing the distancdtypena

to be driven to zero. To overcome this limitation, we decidddinally, we take the min-cut of this graph to yield a multi-
to incorporate prior knowledge of typical object movement tregion segmentation.

limit the instability. Assuming objects to typically not m®

more thary pixels, we saturate the error norm in (4)-at VIl. EXPERIMENTS

a(z) = exp (%W) (5) Tracking was performed on gray-scale and color videos
and representative frames were chosen to exhibit cluttdr wi
objects of similar intensity undergoing large movementsl F
videos are included in the supplementary material.
The parameters were defined as follows. For all experi-
For each new frame and for each object, the algorithments, we sef = 10 in (1). Also experiments involving the
predicts the object location, determines the distance Igendinear filter (3), we foundy = 5 and p = /2 to be quite
scaling based on prediction error, computes edge weights fobust. In (6), we sef3 = 10 for gray-scale imagery and
the graph, and performs a graph cut segmentation. For igi—= 2 for color. Unless otherwise noted, the base magks
tialization, the user roughly marks the object and backgdoutaken to be the initial user segmentation.
in the first frame. This initialization defines both the irdén On a standard workstatibndepending on the image size,
priors used in the regional edge weights (Il) as well as thRe current system tracks one object at roughly five frames
base mask\/ for each object. per second and two objects at roughly two frames per second
In the prediction step, the centroid from the previous framefluctuating slightly based on the chosen neighborhood. The
segmentation is used as a measuremefithe filter predicts choice of neighborhood also affects the smoothness of the
the object centroid location in this new fralaérom a moving segmentation with smaller neighborhoods tending to intoed
average of displacements. irregular segmentations [18]. It is important to note tisiice
The o(-) scaling function for the distance penalty is calcuthe segmentations for sizes 4 and 8 were not as smooth,
lated from an exponential distribution of err)g — c|| using they introduced larger variations in the calculated cedtro
the form in (5). and hence larger prediction errors. Increased smoothifg (
We propose a new regional edge weight to augment th@s required to maintain track with smaller neighborhoods.
standard weight in (Il). Given the image, our goal is tqracking with size 4 or 8 was therefore not as robust as size 16
determine the best region assignmeffibr each pixel; in other Unless otherwise noted, results are shown with a neighloarho
words, our goal is to maximiz€(r|Z). Now, Bayes rule tells of size 16.
us thatP(r|Z) oc P(Z|r)P(r). If we assumeP(r) is uniform,  The first low-resolution, gray-scale video sequence ire®lv
then its negative log-likelihood is zero, and so it falls @fit several soccer players of similar intensity, yet the initgns
the expression and we have the standard regional term (H)ofile of each team differs enough that opposing players can
Instead, we assume a non-uniform object prior with prolitgibil be distinguished. Figure 7 shows tracking of a player from
P(r) o (a([|¢ — ¢])¢)” and hence:In P(r) o a(||¢—c|)¢. each team amidst occlusion and contact with several other
We assume the background to still be uniformly distributgglayers of similar intensity.
and so its distance penalty prior disappears. The weight0
defines relative distance penalty influence as comparecketo thiPentium IV 3 GHz, 2 GB RAM

wherep is empirically determined.

VI. PROPOSED ALGORITHM



Fig. 8. Tracking the bear and man in color. Due to large movesand
changes in shape, at several points the tracker is partbwthroff, yet it

recovers fully. Full imageleft) and selected cropped fram@sght). Fig. 10. Unsuccessful tracking using a static base maskelfbiase mask
is formed from initial upright segmentatiofieft), the basin of attraction is
too narrow and so tracking fails to fully capture the objestitarotates. Full
image (left) and selected cropped frames showing failure to captureuthe f
object (right).

Fig. 9. Tracking three people in color despite severe ommusnd the similar
intensity profiles of the dark figures. Full imagkft) and selected cropped
frames(right). i

The second video sequence is a color television commercial i
staging a fight between a bear and a man. Figure 8 Sholw. 11. Forming the base mask from an average of the past dgmen-
tracking of the bear and man as they make sudden movemesisns provides a basin of attraction suitable to captheefull object. Full
or change shape. These sudden changes throw the tra@kege(left) and selected cropped framésght).
slightly off but in all cases the tracker recovers fully inewf
frames.

The third sequence is a color video demonstrating occlusilffeS Sight of the van all together in one frame. Although
as two people walk past a third. Figure 9 shows that the traci@€veral regions similar to the van are captured, the tracker
is able to maintain track of all three figures. Notice alsa th® ultimately a}ble to resume tracking the van as the distance
despite the similar intensity profiles of the two dark figyre®€nalty adaptively scales.
the tracker keeps them separated throughout the video. To highlight the advantages of the global graph cut seg-

The fourth sequence is a color video of a stuffed animgjentation, we compared against the more local level set
as the camera rotates with egomotion. As the stuffed aninfdfthod. Figure 15 shows the standard level set methoddailin
rotates in the picture, its shape changes significantly andss ©© track the van. The level set technique performs local
Figure 10 shows, the initial segmentation is a poor choice f@radient descent, and so it only looks for the van in the
forming the base mask/; the basin is too narrow and so C"pssmall region |mmed|ately_surround|ng .the curve. Thus, dl_Je
the head and tail as the object rotates. Figure 11 demoesstrdp @ arge displacement, it makes an incorrect segmentation
that simply forming the base mask from the average of tffem which the sy;tem Is ungble tp recover. Particle filters
past few segmentations captures this change and provided'@4® Peen used in conjunction with the level set method
appropriately shaped basin to capture the full object. kieze [23]- However, the computational burden of computing the
used the average of the last five segmentations to form ffgmentation separately for each particle makes this appro
base mask. Figure 12 shows the underlying averaged migpractical in most applications where speed is critical.

for these frames.

The last and perhaps most challenging video sequence VIII. CONCLUSION
involves a helicopter circling overhead a van. This low- This paper demonstrates a distance penalty to constrain
resolution video combines highly unstable camera motidhe standard graph cut segmentation to regions of interest.
with a low frame rate making for large movements as th&n observer is proposed to predict object locations whike th
helicopter struggles to keep the camera centered on the varediction error is used to scale the distance penaltiesifay
Figure 13 shows selected frames. Notice that the segmamtathasins of attraction that are adaptively sized. The maltiel
captures the bright white van top, the range of intensitiestm graph cut algorithm is then used to find the objects in one
distinguishing it from the background. To highlight the e pass.
instability, Figure 14 shows several frames as the heleopt From here, there are several future directions. In the exper
struggles to maintain a stable view. For several frames timents presented, we used intensity alone as a discrim@ati
tracker fails to find the van at all. Notice that the cameranevéeature, yet more robust feature spaces can be exploitdd [24
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Fig. 12. The base masks corresponding to the frames in FigLifermed
from an average of the past few segmentations.

Fig. 14. Twenty consecutive frames from the aerial van secgieemonstrat-
ing the significant camera motion. Over this span, this wfiptable camera
motion leads to increased prediction error and wider seaegion as the
distance penaltyy is lowered. The system shortly regains trgtd#t to right,
then top to bottom).

o .

Fig. 13. Tracking a van from a helicopter-mounted camerdieg overhead.
Full image (left) and selected cropped fram@sght).

; g ig. 15. Selected consecutive frames from the aerial vaneseg demon-
Also, at, prese_nt the system is not at full rea_ll time rat{#’ating the failure of the level set method to track undeargd displacement.
for multiple objects, and so faster graph solution methodsce this technique is more local, once one frame is sigmifig off, it is
should be examined and extended for multi-label energigsble to search far enough to recover the van and so remiiins o
[25]. In many cases, the distance penalty inhibits capgurin
the entire object, something that more principled shapergri
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