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Abstract. We describe a method of deterministic tractography usindehbased
estimation that remains constrained to the subspace af taisor mixture mod-
els. Existing techniques estimate the local fiber orieotatit each voxel inde-
pendently so there is no running knowledge of confidenceeretimated fiber
model. We formulate fiber tracking as recursive estimatioeach step of tracing
the fiber, the current estimate is guided by the previous.orthis we model the
signal as a weighted mixture of Gaussian tensors and petfaatography within
a filter framework. Starting from a seed point, each fiberased to its termina-
tion using an unscented Kalman filter to simultaneously &tltical model and
propagate in the most consistent direction. Further, weifytite Kalman filter to
enforce model constraintse. positive eigenvalues and convex weights, thereby
constraining it to a subspace of allowable model paramebaspite the presence
of noise and uncertainty, this provides a causal estimatkeofocal structure at
each point along the fiber. Synthetic experiments demdestinat this approach
significantly improves the angular resolution at crossiagd branchings while
consistently estimating the mixture weightsvivo experiments confirm the abil-
ity to trace out fibers in areas known to contain such crosaioranching while
providing inherent path regularization. We conclude bylgpg unsupervised
clustering to provide side-by-side comparison of the madel

1 Introduction

The advent of diffusion weighted magnetic resonance ingagas provided the oppor-

tunity for non-invasive investigation of neural architge. Using this imaging tech-

nique, neuroscientists can investigate how neurons @iigig from one region connect
to other regions, or how well-defined these connections neayrbr such studies, the
quality of the results relies heavily on the chosen fiberespntation and the method of
reconstructing pathways.

To begin studying the microstructure of fibers, we need a firtodeterpret the dif-
fusion weighted signal. Such models fall broadly into twoegaries: parametric and
nonparametric. One of the simplest parametric models igiffiesion tensor which
describes a Gaussian estimate of the diffusion orientai@hstrength at each voxel.
While robust, this model can be inadequate in cases of miked firesence or more
complex orientations, and so to handle more complex dfugatterns, various al-
ternatives have been introduced: weighted mixtute3,4], higher order tensors],
and directional functionsd]. In contrast, nonparametric techniques estimate an -orien
tation distribution function (ODF) describing an arbigraronfiguration of fibers. For
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Fig. 1: System overview illustrating relation between the neutzér§, the scanner signal, and
the unscented Kalman filter as it is used to estimate the fnodlel. At each step, the filter uses
its current model state to reconstruct a synthetic signdlthen compares that against the actual
signal from the scanner in order to update its internal metie.

this estimation, several techniques have been proposeshgthem Q-ball imaging
[2], spherical harmonics[8], spherical deconvolutior9[10,11,6], and diffusion orien-
tation transforms12].

Based on these models, several techniques can be used tstrech pathways.
Deterministic tractography using the single tensor moaeply follows the principal
diffusion direction, while multi-fiber models use varioeshniques for determining the
number of fibers present or when pathways brardsh3. While parametric methods
directly describe the principal diffusion directions,anpreting the ODFs from model
independent representations typically involves a sepaalgiorithm to determine the
number and orientation of diffusion patterns preséwd,8,15]. Several filtering ap-
proaches have been proposed. For example, Kalman andi@éiters [16,17,18], as
well as a moving least squares approdkd},[have been used with single tensor stream-
line tractography, but these have been used for path régati@an and not to estimate
the underlying fiber model. One approach has used a linean#dfilter, although this
method was applied to estimate each voxel independentigglacquisition 20].

1.1 Our contributions

Of the approaches listed above, nearly all fit the model at @agel independent of

other voxels; however, tractography is a causal processarkixe at each new position
along the fiber based upon the diffusion found at the prevposgtion. In this paper, we

treat model estimation and tractography as such by plabisgtocess within a causal
filter. As we examine the signal at each new position, ther fikeursively updates the
underlying local model parameters, provides the variahtead estimate, and indicates
the direction in which to propagate tractography.

To begin estimating within a finite dimensional filter, we nebthe diffusion signal
using a weighted mixture of two tensors. This enables esomdirectly from the raw
signal without separate preprocessing or regularizaBenause the signal reconstruc-
tion is nonlinear, we use the unscented Kalman filter to ppriocal model estimation
and then propagate in the most consistent directiég. (). Further, we use a con-
strained version of the unscented Kalman filter to ensurdaehsor eigenvalues are
positive and the mixture weights are non-negative and carsing causal estimation



in this way yields inherent path regularization, consispanrtial volume estimation, and
accurate fiber resolution at crossing angles not found willependent optimization.

2 Approach

The main idea of our approach is to trace the local fiber catéats using the estimation
at previous positions to guide estimation at the currenitipos In a loop, the Kalman
filter estimates the model at the current position, move®p st that direction, and
then begins estimation again. Recursive estimation inntisisner greatly improves the
accuracy of resolving individual orientations and yieldsarently smooth tracts despite
the presence of noise and uncertainty.

Section 2.Iprovides the necessary background on modeling the measuotesig-
nal using tensors and defines the specific weighted two-fileetetremployed in this
study. ThenSection 2.2escribes how this model can be estimated using an unscented
Kalman filter and further how the constraints are enforced.

2.1 Modeling local fiber orientations

In diffusion weighted imaging, image contrast is relatedhe strength of water dif-
fusion, and our goal is to accurately relate these signaentainderlying model of
putative fibers. At each image voxel, diffusion is measurkethg a set of distinct
gradientsuy, ...,u,, € S? (on the unit sphere), producing the corresponding signal,
s = [s1,....,5m |7 € R™. For voxels containing a mixed diffusion pattern, a general
weighted formulation is expressed as—= sy Zj wje*b“?DJ‘“i, wheresy is the base-
line signal intensityp is an acquisition-specific constant; are convex weights, and
D; are tensors, each representing a diffusion pattern.

From that general mixture model, we choose a restricted ¥atimonly two weighted
components. This choice is guided by several previousesswiiich found two-component
models to be sufficient dt = 1000 [2,3,13,14,4,21]. Also, we assume the shape of
each tensor to be ellipsoidale. there is one dominant principal diffusion direction
with eigenvalue\; and the remaining orthonormal directions have equal ei@jerg
A2 = Az (asin B,6]). These assumptions leave us with the following model used
this study:

—pul ) —put )
s; = spwie bu; Diu; + sowae bu; Dzuz7 (1)

wherew;, wo are convex weights anb,, D, are each expressible &= \;mm” +

X2 (pp” +qq”) , with m,p,q € S? forming an orthonormal basis aligned to the
principal diffusion directionm. The free model parameters are then, A1, A2q,
w1, Mo, A\12, A2g, aNdws. Lastly, we wish to constrain this model to have positive
eigenvalues and convex weights;( w, > 0 andw; + ws = 1).

2.2 Estimating the fiber model

Given the measured signal at a particular voxel, we want tismate the underlying
model parameters that explain this signal. As in streantliaetography, we treat the
fiber as the trajectory of a particle which we trace out. Athesiep, we examine the
measured signal at that position, use that measurementisiaipur model parameters
within the filter, and propagate forward in the most consistiirection Fig. lillustrates
this filtering process.



Algorithm 1 Unscented Kalman Filter

1: Form weighted sigma poini, = {w;, x;}7", around current meag; and covariance’;
with scaling factor

X0 = X¢ xi = X¢ + [v/CPs Xitn = Xt — [\/(Pili
2: Predict the new sigma points and observations
Xt+1\t = f[Xt] Yt+1\t = h[Xt+1\t]
3: Compute weighted means and covarianegs,
Xit1)t = Z Wi X Pry = Z wi(xi = Xep110) (Vi — Fegnpe)

4: Update estimate using Kalman gdihand scanner measurement
Xit1 =Rep1e + K(yi — ¥eg1)e)  Piyr = Poo — KP K' K = PPy}

To use a state-space filter for estimating the model parasj@te need the application-
specific definition of four filter components:

1. The system state]: the model parameters

2. The state transition functiorf): how the model changes as we trace the fiber

3. The observation functiork}: how the signal appears given a particular model state
4. The measuremeng): the actual signal obtained from the scanner

For our state, we directly use the parameters for the twsetemodel inEq. 1

x:[m1 )\11 )\21 w1 Mo )\12 /\22 wg]T, mESQ,)\ERJr,’wE [0,1] (2)
For the state transition we assume identity dynamics; tbal kiber configuration does
not undergo drastic change as it moves from one locationeméixt. Our observation
is the signal reconstructioy, = h[x] = s = [s1,..., 5, |7 usings; described by the
model inEq. 1, and our measurement is the actual signal interpolatedttjiren the
diffusion weighted images at the current position.

Since our signal reconstructionfig. 1is nonlinear, we employ an unscented Kalman
filter to perform estimation. Similar to classical linearlikan filtering, the unscented
version seeks to reconcile the predicted state of the sywitimthe measured state and
addresses the fact that these two processes—predictianeaslirement—may be non-
linear or unknown. InAlgorithm 1 we present the standard version of this filter; for
more thorough treatments, se22P3]. It is important to note that while particle fil-
ters are a common approach to nonlinear estimation, we dhetead the unscented
Kalman filter primarily for its low computational compleyitwith respect to state di-
mension, particle filters require the number of particlebeécexponential to properly
explore the state space. In contrast, the unscented fitjaires2n + 1 particles (sigma
points) for a Gaussian estimate of thalimensional state.

In this standard formulation, we have ignored the congisain our model. This re-
sults in instabilities: the diffusion tensors may becomgederate with zero or negative
eigenvalues, or the weights may become negative. To enémperopriate constraints,
one can directly project any unconstrained statanto the constrained subspa@d]|
In other words, we wish to find the stateclosest to the unconstrained statevhich
still obeys the constraintsix < b. Using P, as a weighting matrix, this becomes a



quadratic programming problem:
min (x — %)" P, '(x — %) subjectto Ax <b. (3)

This projection procedure is applied within unscented Kadrfilter procedure to correct
at every place where we move in the state-space: after Spgethet sigma pointX;,
after transforming the sigma poink,, ;|;, and after the final estimate , ;.

In this study, for voxels that can be modeled with only onestenwe found it
preferable to have both the tensor components similargnoed. Upon encountering
a region of dispersion, the second component is poised auy 1te begin branching
instead of having zero weight and arbitrary orientation.fa8eor such solutions, we
require the weights of each of the components to be not justnegative but also
greater than 0.2, and so, in our current implementatib@ndb are constructed to
encode the following state constraints:

A1, A2y A1g, A2 >0 wi,we > 02wy +we =1 (4)
3 Experiments

We first use experiments with synthetic data to validate echnique against ground
truth. We confirm that our approach accurately recognizessing fibers over a broad
range of angles and consistently estimates the partiam@duSection 3.). We then
examine a real dataset to demonstrate how causal estimatadoie to pick up fibers
and branchings known to exist vivo yet absent using other techniqu&e¢tion 3.2
Last, we use unsupervised clustering of single- and tweetetnactography to highlight
differences $ection 3.3.

In these experiments, we compare against two alternativeitgues. First, we use
sharpened spherical harmonics with peak detection asidedadn [8] (order! = 8,
regularization, = 0.006). This provides a comparison with an independently esgohat
nonparametric representation. Second, when performangagraphy on real data, we
also compare against single-tensor streamline tractbgrap a baseline.

3.1 Synthetic validation

Following the experimental method of generating multi-pamiment synthetic data
foundin [2,8,15], we averaged the eigenvalues of the 300 voxels with highesional
anisotropy (FA) in our real data s€t1200, 100, 100} um?msec. We used these eigen-
values to generate synthetic MR signals accordirtggolatb= 1000 with 81 gradient
directions on the hemisphere and introduced Rician noiS&(S 5 dB).

While the independent optimization techniques can be rumdiidually gener-
ated voxels, care must be taken in constructing reasone®i@gos to test the causal
filter. For this purpose, we constructed a set of two-dinmmalifields through which
to navigate. In the middle is one long pathway where the fdtarts at one end esti-
mating a single tensor but then runs into voxels with two seddibers at a fixed angle
and weighting. In this crossing region we calculated ertatigics to compare against
sharpened spherical harmonics.

From these synthetic sets, we examined detection rateJanggolution, and es-
timated volume fractions and we plot the resultsFig. 2 Each column looks at a
different primary-secondary weighting combination, aadterow looks at a different
metric. In the top row, we count how many times each technitigténguishes two sep-
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Fig. 2: Comparison of sharpened spherical harmof(ried) against filtered approadblack) over
several different metrics: detection rate, angular resmiyestimated primary fiber weigfrows,
top to bottom). Each column is a different primary fiber weighting. The filjbeovides superior
detection rates, accurate angular resolution, and censiateight estimated. Trendlines indicate
mean while dashed bars indicate one standard deviation.

Single-tensor Spherical harmonics Filtered
Fig. 3: Filtered tractography picks up many fiber paths consistéthi tive underlying structures.
Both single-tensor streamline and sharpened sphericaldracs are unable to find the majority
of these pathways. Seed region indicated in yellow.

arate fibers. The filtered approagiack) is able to detect two distinct fibers at crossing
angles far below that using spherical harmoriesl). Further, the filtered approach
maintains such relatively high detection rates even at@p#4ttial voluming(far right
column). In the middle row, we look at where each technique reportedibers and we
record the error in estimated angles. From this, we seephatigal harmonics resultin

an angular error of roughly 25t best and fails to detect a second component at angles
below 60. In contrast, the filtered approach has an error betweerf &i@ is able to
accurately estimate down to crossing angles ¢f 30 the bottom row, we look at the
primary fiber weight estimated by the filter. As expected; #stimate is most accurate
closer to 90 (blue line indicates true weight).
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Fig. 4: Tracing fibers originating from the center of the entire emrallosum viewed from
above. The proposed filtered tractography is able to find nadtkie lateral projectiongblue)
while single-tensor is unable to find any and few are foundhsftarpened spherical harmonics.
Seed region indicated in yellow.

3.2 Invivo tractography

This study focuses on fibers originating in the corpus callosSpecifically, we sought
to trace out the lateral transcallosal fibers that run thinaihg corpus callosum out to
the lateral gyri. Itis known that single-tensor streamtiraetography only traces out the
dominant pathways forming the U-shaped callosal radiatibite spherical harmonics
only capture some of these pathwa8d p.

We begin by seeding each algorithm up to thirty times in vexglthe intersection
of the mid-sagital plane and the corpus callosum. To exgloaachings found using
the proposed technique, we considered a component to behingrif it was separated
from the primary component by less than°40ith FA>0.15 and weight above 0.3.
Similarly, with sharpened spherical harmonics, we considét a branch if we found
additional maxima over the same range. We terminated fibBenweither the gener-
alized fractional anisotropy?] of the estimated signal fell below 0.1 or the primary
component FA fell below 0.15 or weight below 0.3.

We tested our approach on a human brain scan using a 3-Teglzeibta collect
51 diffusion weighted images on the hemispheré at 900 s/mnt, a scan sequence
comparable those 08[15]. Fig. 3 shows tracts originating from within a few voxels
intersecting a chosen coronal slice. Confirming the resulf8,15], sharpened spher-
ical harmonics only pick up a few fibers intersecting the @ysdd callosal radiata. In
contrast, our proposed algorithm traces out many pathwaysistent with the apparent
anatomy.Fig. 4 shows a view of the whole corpus callosum from above. Theadiite
approach is able to pick up many transcallosal fibers througthe corpus callosum
as well as infiltrating the frontal gyri to a greater degresntkither alternate technique.
To emphasize transcallosal tracts, we color as blue thosesfixiting a corridor of
+22 mm around the mid-sagittal plane.
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Fig.5: Clustering fronto-occipital fibers using both single- amebtensor models. Using the
same seed regions, the two-tensor model finds many moretiabteonnections. Top row is a
side view; bottom row is a top view.

3.3 Clustering

In a final set of experiments, we used unsupervised clugt@fithe single- and two-
tensor tracts to provide side-by-side comparison betweeiwo approaches. For clus-
tering, we use affinity propagatio24]. Similar to spectral and hierarchical methods,
affinity propagation takes as input a square affinity matgfirdng the “distance” be-
tween any two fibers. In addition it requires a preferenceaupater which essentially
defines the preferred cluster size. With these, it automlitidetermines the resulting
number of clusters.

There are several key features of affinity propagation thakert an attractive
choice in clustering fibers. First, the affinity matrix canrmn-metric, so in this study
we use the negative mean Chamfer distance itself and ardahbi®id the extra un-
necessary steps of symmetrizing the dista2&dnd converting it to an inner product
based on a radial-basis function requiring yet another wadtt parameter46]. Fig. 5
shows a clustering of fronto-occipital fibers in the rightfisphere using this approach.
Visible in both techniques are false-positives; however,believe that the increased
density and crossing pathways of multi-tensor methodsredlire more precise dis-
tance measures than simply the Chamfer or Hausdorff meagige 6 examines a full
clustering of the right hemisphere. We believe affinity @gation may provide natural
cortical segmentations as seen when all the clusters fglestensor tractography are
combined. On the right, we select out several of the majortemsor clusters to show
their denser cortical insertions. One drawback to all uesuiped clustering algorithms
is that they are oblivious to actual anatomy: here we seeghenand lower arcuate are
separated into two clusters and merged with part of the atein

A second property of affinity propagation is that clusterteesm themselves are
fibers. In contrast, methods such as k-means and expectataimization find the
cluster centers (called “exemplars”) to be weighted comtidm of input fibers, a value
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Fig. 6: Clustering of pathways in the right hemisphere. On the ieé,view all of the single-
tensor clusters together. On the right, we focus on severaténsor clusters. Compared to the
single-tensor clusters, the two-tensor clusters havead@ustical insertions.

which requires some basis for representatieg. 7 shows the cluster exemplars for the
fronto-occipital pathways previously shown.

Third, the clustered solution is completely dependent endistance measure and
the preference parameter—no additional information isledeFor example, increasing
this preference parameter produces a monotonically isagrgaumber of clusters, es-
sentially segmenting the anatomy at smaller and smalléesdaurther, this preference
parameter is typically problem specific and often the mefinigf matrix value is cho-
sen as a initial gues§ig. 8 shows how a segmentation of the corpus callosum along
the mid-sagittal plane is further parcellated as the pesfes parameter is increased.
Two-tensor tractography shows increased segmentatiotodihe clustering of lateral
branches seen fFig. 4. The lack of correspondence between both methods on the same
patient suggests that affinity propagation may not prodocsistent clusters across a
group of patients.

Last, affinity propagation does not require eigen-decoritipoof the Gram matrix,
but instead iteratively passes scalar values betweenspaittit a clustering emerges, an
approachthat allows it to scale to larger problem sizessifde with eigen-decomposition.
In our experiments, we were able to segment 30,000 fibestiaatout six hours using
MATLAB. !

4 Conclusion

In this work, we demonstrated that using the unscented Kaliittar provides robust
estimates of the fiber model with much higher accuracy thdependent estimation
techniques. Specifically, the proposed approach givesfisigmtly lower angular error
(5-10°) in regions with fiber crossings than using sharpened spdldrarmonics (15-
20°), and it reliably estimates the partial volume fractions.

Yhttp://ww. psi.toronto. edu/af finitypropagation
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Fig. 7: Exemplar fronto-occipital fibers underlyingig. 5. Both models found essentially the
same major cluster centers, and so the primary differeneemahe many minor branches and
insertions found using the two-tensor method.

Initial experiments using affinity propagation for unsupsed fiber clustering are
promising; however, we believe if to be unsuitable for granplysis. Ag-ig. 8 shows,
clustering can be highly dependent on preference paranigtdts nature (unsuper-
vised) it is not obvious how to incorporate anatomical a&$at® help guide clustering.
It appears quite suitable for patient-specific studies aagloortical parcellation due
to its relatively simple implementation and single parameletermining cluster size.
Nevertheless, its use here was simply to provide side-thg-sdmparison between the
single- and two-tensor tractography. In doing so, it reséad need for suppressing
false-positive connections, something we strongly belieill require more global in-
formation in the form of anatomical priors.
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