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Abstract. We describe a method of deterministic tractography using model-based
estimation that remains constrained to the subspace of valid tensor mixture mod-
els. Existing techniques estimate the local fiber orientation at each voxel inde-
pendently so there is no running knowledge of confidence in the estimated fiber
model. We formulate fiber tracking as recursive estimation:at each step of tracing
the fiber, the current estimate is guided by the previous. To do this we model the
signal as a weighted mixture of Gaussian tensors and performtractography within
a filter framework. Starting from a seed point, each fiber is traced to its termina-
tion using an unscented Kalman filter to simultaneously fit the local model and
propagate in the most consistent direction. Further, we modify the Kalman filter to
enforce model constraints,i.e. positive eigenvalues and convex weights, thereby
constraining it to a subspace of allowable model parameters. Despite the presence
of noise and uncertainty, this provides a causal estimate ofthe local structure at
each point along the fiber. Synthetic experiments demonstrate that this approach
significantly improves the angular resolution at crossingsand branchings while
consistently estimating the mixture weights.In vivo experiments confirm the abil-
ity to trace out fibers in areas known to contain such crossingand branching while
providing inherent path regularization. We conclude by applying unsupervised
clustering to provide side-by-side comparison of the models.

1 Introduction
The advent of diffusion weighted magnetic resonance imaging has provided the oppor-
tunity for non-invasive investigation of neural architecture. Using this imaging tech-
nique, neuroscientists can investigate how neurons originating from one region connect
to other regions, or how well-defined these connections may be. For such studies, the
quality of the results relies heavily on the chosen fiber representation and the method of
reconstructing pathways.

To begin studying the microstructure of fibers, we need a model to interpret the dif-
fusion weighted signal. Such models fall broadly into two categories: parametric and
nonparametric. One of the simplest parametric models is thediffusion tensor which
describes a Gaussian estimate of the diffusion orientationand strength at each voxel.
While robust, this model can be inadequate in cases of mixed fiber presence or more
complex orientations, and so to handle more complex diffusion patterns, various al-
ternatives have been introduced: weighted mixtures [1,2,3,4], higher order tensors [5],
and directional functions [6]. In contrast, nonparametric techniques estimate an orien-
tation distribution function (ODF) describing an arbitrary configuration of fibers. For
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Fig. 1: System overview illustrating relation between the neural fibers, the scanner signal, and
the unscented Kalman filter as it is used to estimate the localmodel. At each step, the filter uses
its current model state to reconstruct a synthetic signal and then compares that against the actual
signal from the scanner in order to update its internal modelstate.

this estimation, several techniques have been proposed, among them Q-ball imaging
[2], spherical harmonics [7,8], spherical deconvolution [9,10,11,6], and diffusion orien-
tation transforms [12].

Based on these models, several techniques can be used to reconstruct pathways.
Deterministic tractography using the single tensor model simply follows the principal
diffusion direction, while multi-fiber models use various techniques for determining the
number of fibers present or when pathways branch [3,13]. While parametric methods
directly describe the principal diffusion directions, interpreting the ODFs from model
independent representations typically involves a separate algorithm to determine the
number and orientation of diffusion patterns present [14,9,8,15]. Several filtering ap-
proaches have been proposed. For example, Kalman and particle filters [16,17,18], as
well as a moving least squares approach [19], have been used with single tensor stream-
line tractography, but these have been used for path regularization and not to estimate
the underlying fiber model. One approach has used a linear Kalman filter, although this
method was applied to estimate each voxel independently during acquisition [20].

1.1 Our contributions

Of the approaches listed above, nearly all fit the model at each voxel independent of
other voxels; however, tractography is a causal process: wearrive at each new position
along the fiber based upon the diffusion found at the previousposition. In this paper, we
treat model estimation and tractography as such by placing this process within a causal
filter. As we examine the signal at each new position, the filter recursively updates the
underlying local model parameters, provides the variance of that estimate, and indicates
the direction in which to propagate tractography.

To begin estimating within a finite dimensional filter, we model the diffusion signal
using a weighted mixture of two tensors. This enables estimation directly from the raw
signal without separate preprocessing or regularization.Because the signal reconstruc-
tion is nonlinear, we use the unscented Kalman filter to perform local model estimation
and then propagate in the most consistent direction (Fig. 1). Further, we use a con-
strained version of the unscented Kalman filter to ensure thetensor eigenvalues are
positive and the mixture weights are non-negative and convex. Using causal estimation



in this way yields inherent path regularization, consistent partial volume estimation, and
accurate fiber resolution at crossing angles not found with independent optimization.

2 Approach
The main idea of our approach is to trace the local fiber orientations using the estimation
at previous positions to guide estimation at the current position. In a loop, the Kalman
filter estimates the model at the current position, moves a step in that direction, and
then begins estimation again. Recursive estimation in thismanner greatly improves the
accuracy of resolving individual orientations and yields inherently smooth tracts despite
the presence of noise and uncertainty.

Section 2.1provides the necessary background on modeling the measurement sig-
nal using tensors and defines the specific weighted two-fiber model employed in this
study. Then,Section 2.2describes how this model can be estimated using an unscented
Kalman filter and further how the constraints are enforced.

2.1 Modeling local fiber orientations

In diffusion weighted imaging, image contrast is related tothe strength of water dif-
fusion, and our goal is to accurately relate these signals toan underlying model of
putative fibers. At each image voxel, diffusion is measured along a set of distinct
gradients,u1, ...,um ∈ S

2 (on the unit sphere), producing the corresponding signal,
s = [ s1, ..., sm ]T ∈ R

m. For voxels containing a mixed diffusion pattern, a general
weighted formulation is expressed as,si = s0

∑

j wje
−buT

i Djui , wheres0 is the base-
line signal intensity,b is an acquisition-specific constant,wj are convex weights, and
Dj are tensors, each representing a diffusion pattern.

From that general mixture model, we choose a restricted formwith only two weighted
components. This choice is guided by several previous studies which found two-component
models to be sufficient atb = 1000 [2,3,13,14,4,21]. Also, we assume the shape of
each tensor to be ellipsoidal,i.e. there is one dominant principal diffusion directionm

with eigenvalueλ1 and the remaining orthonormal directions have equal eigenvalues
λ2 = λ3 (as in [4,6]). These assumptions leave us with the following model usedin
this study:

si = s0w1e
−buT

i D1ui + s0w2e
−buT

i D2ui , (1)

wherew1, w2 are convex weights andD1, D2 are each expressible asD = λ1mmT +
λ2

(

ppT + qqT
)

, with m,p,q ∈ S
2 forming an orthonormal basis aligned to the

principal diffusion directionm. The free model parameters are thenm1, λ11, λ21,
w1, m2, λ12, λ22, andw2. Lastly, we wish to constrain this model to have positive
eigenvalues and convex weights (w1, w2 ≥ 0 andw1 + w2 = 1).

2.2 Estimating the fiber model

Given the measured signal at a particular voxel, we want to estimate the underlying
model parameters that explain this signal. As in streamlinetractography, we treat the
fiber as the trajectory of a particle which we trace out. At each step, we examine the
measured signal at that position, use that measurement to update our model parameters
within the filter, and propagate forward in the most consistent direction.Fig. 1illustrates
this filtering process.



Algorithm 1 Unscented Kalman Filter

1: Form weighted sigma pointsXt = {wi,xi}
2n
i=0 around current meanxt and covariancePt

with scaling factorζ

x0 = xt xi = xt + [
p

ζPt]i xi+n = xt − [
p

ζPt]i

2: Predict the new sigma points and observations

Xt+1|t = f [Xt] Yt+1|t = h[Xt+1|t]

3: Compute weighted means and covariances,e.g.

x̄t+1|t =
X

i

wi xi Pxy =
X

i

wi(xi − x̄t+1|t)(yi − ȳt+1|t)
T

4: Update estimate using Kalman gainK and scanner measurementyt

xt+1 = x̄t+1|t + K(yt − ȳt+1|t) Pt+1 = Pxx − KPyyK
T

K = PxyP
−1
yy

To use a state-space filter for estimating the model parameters, we need the application-
specific definition of four filter components:

1. The system state (x): the model parameters
2. The state transition function (f ): how the model changes as we trace the fiber
3. The observation function (h): how the signal appears given a particular model state
4. The measurement (y): the actual signal obtained from the scanner

For our state, we directly use the parameters for the two-tensor model inEq. 1:

x = [m1 λ11 λ21 w1 m2 λ12 λ22 w2 ]T , m ∈ S
2, λ ∈ R

+, w ∈ [0, 1]. (2)

For the state transition we assume identity dynamics; the local fiber configuration does
not undergo drastic change as it moves from one location to the next. Our observation
is the signal reconstruction,y = h[x] = s = [ s1, ..., sm ]T usingsi described by the
model inEq. 1, and our measurement is the actual signal interpolated directly on the
diffusion weighted images at the current position.

Since our signal reconstruction inEq. 1is nonlinear, we employ an unscented Kalman
filter to perform estimation. Similar to classical linear Kalman filtering, the unscented
version seeks to reconcile the predicted state of the systemwith the measured state and
addresses the fact that these two processes–prediction andmeasurement–may be non-
linear or unknown. InAlgorithm 1 we present the standard version of this filter; for
more thorough treatments, see [22,23]. It is important to note that while particle fil-
ters are a common approach to nonlinear estimation, we choseinstead the unscented
Kalman filter primarily for its low computational complexity. With respect to state di-
mension, particle filters require the number of particles tobe exponential to properly
explore the state space. In contrast, the unscented filter requires2n + 1 particles (sigma
points) for a Gaussian estimate of then-dimensional state.

In this standard formulation, we have ignored the constraints on our model. This re-
sults in instabilities: the diffusion tensors may become degenerate with zero or negative
eigenvalues, or the weights may become negative. To enforceappropriate constraints,
one can directly project any unconstrained statex onto the constrained subspace [23].
In other words, we wish to find the statêx closest to the unconstrained statex which
still obeys the constraints,Ax̂ ≤ b. UsingPt as a weighting matrix, this becomes a



quadratic programming problem:

min
x̂

(x − x̂)T P−1
t (x − x̂) subject to Ax̂ ≤ b. (3)

This projection procedure is applied within unscented Kalman filter procedure to correct
at every place where we move in the state-space: after spreading the sigma pointsXt,
after transforming the sigma pointsXt+1|t, and after the final estimatext+1.

In this study, for voxels that can be modeled with only one tensor, we found it
preferable to have both the tensor components similarly oriented. Upon encountering
a region of dispersion, the second component is poised and ready to begin branching
instead of having zero weight and arbitrary orientation. Tofavor such solutions, we
require the weights of each of the components to be not just non-negative but also
greater than 0.2, and so, in our current implementation,A andb are constructed to
encode the following state constraints:

λ11, λ21, λ12, λ22 > 0 w1, w2 ≥ 0.2 w1 + w2 = 1. (4)

3 Experiments
We first use experiments with synthetic data to validate our technique against ground
truth. We confirm that our approach accurately recognizes crossing fibers over a broad
range of angles and consistently estimates the partial volumes (Section 3.1). We then
examine a real dataset to demonstrate how causal estimationis able to pick up fibers
and branchings known to existin vivo yet absent using other techniques (Section 3.2).
Last, we use unsupervised clustering of single- and two-tensor tractography to highlight
differences (Section 3.3).

In these experiments, we compare against two alternative techniques. First, we use
sharpened spherical harmonics with peak detection as described in [8] (order l = 8,
regularizationL = 0.006). This provides a comparison with an independently estimated
nonparametric representation. Second, when performing tractography on real data, we
also compare against single-tensor streamline tractography for a baseline.

3.1 Synthetic validation

Following the experimental method of generating multi-compartment synthetic data
found in [2,8,15], we averaged the eigenvalues of the 300 voxels with highestfractional
anisotropy (FA) in our real data set:{1200, 100, 100}µm2/msec. We used these eigen-
values to generate synthetic MR signals according toEq. 1atb=1000 with 81 gradient
directions on the hemisphere and introduced Rician noise (SNR≈ 5 dB).

While the independent optimization techniques can be run onindividually gener-
ated voxels, care must be taken in constructing reasonable scenarios to test the causal
filter. For this purpose, we constructed a set of two-dimensional fields through which
to navigate. In the middle is one long pathway where the filterstarts at one end esti-
mating a single tensor but then runs into voxels with two crossed fibers at a fixed angle
and weighting. In this crossing region we calculated error statistics to compare against
sharpened spherical harmonics.

From these synthetic sets, we examined detection rate, angular resolution, and es-
timated volume fractions and we plot the results inFig. 2. Each column looks at a
different primary-secondary weighting combination, and each row looks at a different
metric. In the top row, we count how many times each techniquedistinguishes two sep-
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Fig. 2: Comparison of sharpened spherical harmonics(red) against filtered approach(black) over
several different metrics: detection rate, angular resolution, estimated primary fiber weight(rows,
top to bottom). Each column is a different primary fiber weighting. The filter provides superior
detection rates, accurate angular resolution, and consistent weight estimated. Trendlines indicate
mean while dashed bars indicate one standard deviation.
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Fig. 3: Filtered tractography picks up many fiber paths consistent with the underlying structures.
Both single-tensor streamline and sharpened spherical harmonics are unable to find the majority
of these pathways. Seed region indicated in yellow.

arate fibers. The filtered approach(black) is able to detect two distinct fibers at crossing
angles far below that using spherical harmonics(red). Further, the filtered approach
maintains such relatively high detection rates even at 80/20 partial voluming(far right
column). In the middle row, we look at where each technique reported two fibers and we
record the error in estimated angles. From this, we see that spherical harmonics result in
an angular error of roughly 15◦ at best and fails to detect a second component at angles
below 60◦. In contrast, the filtered approach has an error between 5-10◦ and is able to
accurately estimate down to crossing angles of 30◦. In the bottom row, we look at the
primary fiber weight estimated by the filter. As expected, this estimate is most accurate
closer to 90◦ (blue line indicates true weight).
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Fig. 4: Tracing fibers originating from the center of the entire corpus callosum viewed from
above. The proposed filtered tractography is able to find manyof the lateral projections(blue)
while single-tensor is unable to find any and few are found with sharpened spherical harmonics.
Seed region indicated in yellow.

3.2 In vivo tractography

This study focuses on fibers originating in the corpus callosum. Specifically, we sought
to trace out the lateral transcallosal fibers that run through the corpus callosum out to
the lateral gyri. It is known that single-tensor streamlinetractography only traces out the
dominant pathways forming the U-shaped callosal radiationwhile spherical harmonics
only capture some of these pathways [8,15].

We begin by seeding each algorithm up to thirty times in voxels at the intersection
of the mid-sagital plane and the corpus callosum. To explorebranchings found using
the proposed technique, we considered a component to be branching if it was separated
from the primary component by less than 40◦ with FA≥0.15 and weight above 0.3.
Similarly, with sharpened spherical harmonics, we considered it a branch if we found
additional maxima over the same range. We terminated fibers when either the gener-
alized fractional anisotropy [2] of the estimated signal fell below 0.1 or the primary
component FA fell below 0.15 or weight below 0.3.

We tested our approach on a human brain scan using a 3-Tesla magnet to collect
51 diffusion weighted images on the hemisphere atb = 900 s/mm2, a scan sequence
comparable those of [8,15]. Fig. 3 shows tracts originating from within a few voxels
intersecting a chosen coronal slice. Confirming the resultsin [8,15], sharpened spher-
ical harmonics only pick up a few fibers intersecting the U-shaped callosal radiata. In
contrast, our proposed algorithm traces out many pathways consistent with the apparent
anatomy.Fig. 4 shows a view of the whole corpus callosum from above. The filtered
approach is able to pick up many transcallosal fibers throughout the corpus callosum
as well as infiltrating the frontal gyri to a greater degree than either alternate technique.
To emphasize transcallosal tracts, we color as blue those fibers exiting a corridor of
±22 mm around the mid-sagittal plane.



Single-tensor Two-tensor

Fig. 5: Clustering fronto-occipital fibers using both single- and two-tensor models. Using the
same seed regions, the two-tensor model finds many more potential connections. Top row is a
side view; bottom row is a top view.

3.3 Clustering

In a final set of experiments, we used unsupervised clustering of the single- and two-
tensor tracts to provide side-by-side comparison between the two approaches. For clus-
tering, we use affinity propagation [24]. Similar to spectral and hierarchical methods,
affinity propagation takes as input a square affinity matrix defining the “distance” be-
tween any two fibers. In addition it requires a preference parameter which essentially
defines the preferred cluster size. With these, it automatically determines the resulting
number of clusters.

There are several key features of affinity propagation that make it an attractive
choice in clustering fibers. First, the affinity matrix can benon-metric, so in this study
we use the negative mean Chamfer distance itself and are ableto avoid the extra un-
necessary steps of symmetrizing the distance [25] and converting it to an inner product
based on a radial-basis function requiring yet another bandwidth parameter [26]. Fig. 5
shows a clustering of fronto-occipital fibers in the right hemisphere using this approach.
Visible in both techniques are false-positives; however, we believe that the increased
density and crossing pathways of multi-tensor methods willrequire more precise dis-
tance measures than simply the Chamfer or Hausdorff measures.Fig. 6examines a full
clustering of the right hemisphere. We believe affinity propagation may provide natural
cortical segmentations as seen when all the clusters for single-tensor tractography are
combined. On the right, we select out several of the major two-tensor clusters to show
their denser cortical insertions. One drawback to all unsupervised clustering algorithms
is that they are oblivious to actual anatomy: here we see the upper and lower arcuate are
separated into two clusters and merged with part of the uncinate.

A second property of affinity propagation is that cluster centers themselves are
fibers. In contrast, methods such as k-means and expectationmaximization find the
cluster centers (called “exemplars”) to be weighted combination of input fibers, a value
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Fig. 6: Clustering of pathways in the right hemisphere. On the left,we view all of the single-
tensor clusters together. On the right, we focus on several two-tensor clusters. Compared to the
single-tensor clusters, the two-tensor clusters have denser cortical insertions.

which requires some basis for representation.Fig. 7shows the cluster exemplars for the
fronto-occipital pathways previously shown.

Third, the clustered solution is completely dependent on the distance measure and
the preference parameter–no additional information is needed. For example, increasing
this preference parameter produces a monotonically increasing number of clusters, es-
sentially segmenting the anatomy at smaller and smaller scales. Further, this preference
parameter is typically problem specific and often the mean affinity matrix value is cho-
sen as a initial guess.Fig. 8 shows how a segmentation of the corpus callosum along
the mid-sagittal plane is further parcellated as the preference parameter is increased.
Two-tensor tractography shows increased segmentation dueto the clustering of lateral
branches seen inFig. 4. The lack of correspondence between both methods on the same
patient suggests that affinity propagation may not produce consistent clusters across a
group of patients.

Last, affinity propagation does not require eigen-decomposition of the Gram matrix,
but instead iteratively passes scalar values between points until a clustering emerges, an
approach that allows it to scale to larger problem sizes infeasible with eigen-decomposition.
In our experiments, we were able to segment 30,000 fiber tracts in about six hours using
MATLAB. 1

4 Conclusion
In this work, we demonstrated that using the unscented Kalman filter provides robust
estimates of the fiber model with much higher accuracy than independent estimation
techniques. Specifically, the proposed approach gives significantly lower angular error
(5-10◦) in regions with fiber crossings than using sharpened spherical harmonics (15-
20◦), and it reliably estimates the partial volume fractions.

1 http://www.psi.toronto.edu/affinitypropagation

http://www.psi.toronto.edu/affinitypropagation
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Fig. 7: Exemplar fronto-occipital fibers underlyingFig. 5. Both models found essentially the
same major cluster centers, and so the primary differences are in the many minor branches and
insertions found using the two-tensor method.

Initial experiments using affinity propagation for unsupervised fiber clustering are
promising; however, we believe if to be unsuitable for groupanalysis. AsFig. 8shows,
clustering can be highly dependent on preference parameter. By its nature (unsuper-
vised) it is not obvious how to incorporate anatomical atlases to help guide clustering.
It appears quite suitable for patient-specific studies suchas cortical parcellation due
to its relatively simple implementation and single parameter determining cluster size.
Nevertheless, its use here was simply to provide side-by-side comparison between the
single- and two-tensor tractography. In doing so, it revealed a need for suppressing
false-positive connections, something we strongly believe will require more global in-
formation in the form of anatomical priors.
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