Neural Tractography Using an Unscented Kalman Filter

Proceedings page 126

James Malcolm

Advisor: Yogesh Rathi Psychiatry Neuroimaging Lab. Harvard Medical School

Presented at "Information Processing in Medical Imaging", 7 July 2009

background

neural fibers

[Williams 97]

imaging techniques

- Diffusion tensor imaging (DTI)
 - [Basser 94]
- High Angular Resolution (QBI)
 [Tuch 02]
- Diffusion Spectrum (DSI)
 - [Wedeen 05, Hagmann 05]

[Hagmann 05]

voxel reconstruction

deterministic tractography

streamline

[Conturo 99, Basser 00]

probabilistic tractography

[Parker 05]

spatial regularization

pre/post-processing

tract regularization

tract regularization

probabilistic approaches:

linear Kalman filter [Gossl 02]

particle filtering [Zhang 07]

single-tensor path regularization method: the model

scanner signal b=900 51 directions 1.7mm isotropic voxel 17 minute scan

[Bartzokis]

single-tensor limitations

rat spinal nerves

true ODF

single-tensor ODF

[Campbell 05, Descoteaux 06]

[Descoteaux 06]

multi-tensor signal model

$$S(\boldsymbol{u}) = s_0 \sum_j w_j e^{-b\boldsymbol{u}^T D_j \boldsymbol{u}}$$

D_{j}	diffusion tensor
D_{j}	

- *u* unit direction
- w_i convex weights
- *b* acquisition constant
- *s*₀ null signal (b=0)

model assumptions ...in this study

Two fibers

Fixed volume fractions

Tensors are elliptic or isotropic

model parameters

for two fibers... ...two principal directions $m \in \mathbb{R}^3$...two primary eigenvalues $\lambda_1 \in \mathbb{R}$...two minor eigenvalues $\lambda_2 \in \mathbb{R}$ 5 + 5 = 10 parameters

model parameters

for two fibers... ...two principal directions $\mathbf{m} \in \mathbb{R}^3$...two primary eigenvalues $\lambda_1 \in \mathbb{R}$...two minor eigenvalues $\lambda_2 \in \mathbb{R}$ 5 + 5 = 10 parameters $S(u) = 0.5 s_0 e^{-b u^T D_1 u} + 0.5 s_0 e^{-b u^T D_2 u}$ $D_1 = \lambda_{11} \boldsymbol{m}_1 \boldsymbol{m}_1^T + \lambda_{21} (\boldsymbol{p} \boldsymbol{p}^T + \boldsymbol{q} \boldsymbol{q}^T)$

eigenvectors: m, p, q

method: estimating the model

independent estimation

model-based filtering

underlying model

objectives:

- estimate model from measurements
- suppress noise

notation

- x state of system at time t
 state = "model parameters"
- *y*_t what you see at time t observation, measurement
- update: $x_{t+1} = F x_t$ $x_{t+1} = f(x_t)$ observation: $y_t = G x_t$ $y_t = g(x_t)$ linear nonlinear

Kalman filtering

predict ... measure ... reconcile ... repeat ...

$$\begin{aligned} \mathbf{x} = [\mathbf{m}_1 \lambda_{11} \lambda_{12} \mathbf{m}_2 \lambda_{21} \lambda_{22}]^T \in \mathbb{R}^{10} \\ \mathbf{y} \in \mathbb{R}^m \text{ signal} \end{aligned} \begin{aligned} & 10 \text{ dimensional} \\ & \text{ state} \end{aligned}$$

$$\begin{aligned} \mathbf{x} = [\mathbf{m}_1 \lambda_{11} \lambda_{12} \mathbf{m}_2 \lambda_{21} \lambda_{22}]^T \in \mathbb{R}^{10} \\ \mathbf{y} \in \mathbb{R}^m \text{ signal} \end{aligned} \begin{matrix} \mathbf{10 \text{ dimensional}} \\ \text{ state} \end{matrix}$$

$$\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_t) = \boldsymbol{x}_t$$

small steps slowly varying state

$$\boldsymbol{y}_t = \boldsymbol{g}(\boldsymbol{x}_t) = S(\boldsymbol{u})$$

$$\begin{aligned} \mathbf{x} = [\mathbf{m}_1 \lambda_{11} \lambda_{12} \mathbf{m}_2 \lambda_{21} \lambda_{22}]^T \in \mathbb{R}^{10} \\ \mathbf{y} \in \mathbb{R}^m \text{ signal} \end{aligned} \begin{aligned} & 10 \text{ dimensional} \\ & \text{ state} \end{aligned}$$

$$\boldsymbol{x}_{t+1} = f(\boldsymbol{x}_t) = \boldsymbol{x}_t$$

$$\mathbf{y}_t = g(\mathbf{x}_t) = S(\mathbf{u})$$

$$y(\boldsymbol{u}) = S(\boldsymbol{u}) = 0.5 s_0 e^{-b\boldsymbol{u}^T D_1 \boldsymbol{u}} + 0.5 s_0 e^{-b\boldsymbol{u}^T D_2 \boldsymbol{u}}$$
$$D = \lambda_1 \boldsymbol{m} \boldsymbol{m}^T + \lambda_2 (\boldsymbol{p} \boldsymbol{p}^T + \boldsymbol{q} \boldsymbol{q}^T)$$

signal reconstruction is nonlinear

independent optimization

- least squares
 linearization
- gradient descent local minima
- Levenberg-Marquardt local minima

causal estimation

- extended Kalman filter mean + covariance *linearization*
- particle filter non-parametric *sampling*
- unscented Kalman filter mean + covariance no linearization limited sampling

linear Kalman filter

predict ... measure ... reconcile ... repeat ...

unscented Kalman filter

same update equations modified prediction step

unscented transform

approximate the statistics...not the function

unscented transform

for signal reconstruction...

unscented Kalman filter

predict ... measure ... reconcile ... repeat ...

synthetic validation

b = 1000

brute force optimization

- matching pursuit
- parametric dictionary
- noiseless signal
- discretization, noise

spherical harmonics

- non-parametric
- order eight (8)
- fiber sharpening for peak detection (L=0.006)

[Descoteaux 07]

filtered tractography

- two-fiber model
- unscented Kalman filter

signal reconstruction error

SNR ≈ 5, b = 1000

SNR ≈ 5, b = 1000

angular reconstruction error

SNR ≈ 5, b = 1000

in vivo

b=900 51 directions 1.7mm isotropic voxel 17 minute scan

algorithm

1)interpolate scanner signal (measurement)2)estimate model parameters with UKF3)proceed in most consistent direction4)repeat

- branch: $\theta < 40^{\circ}$
- terminate: FA < 0.15 or GA < 0.10

single tensor

spherical harmonics

filtered two-tensor

filtered two-tensor

(b = 900, 1.7mm, 51 directions)

DSI [Hagmann 05]

filtered two-tensor

filtered two-tensor

single tensor

spherical harmonics

corpus callosum

internal capsule

single tensor

spherical harmonics

filtered two-tensor

primary

branches

variations on a theme

directional functions

parametric: mixture models non-parametric: spherical harmonics higher-order tensors

three tensors

conclusion

inherent coherence along the fiber we should exploit it in the estimation

discussion

model assumptions ...in this study

Two fibers single fiber: align

Fixed volume fractions eigenvalues

Tensors are elliptic or isotropic disc $(\lambda_1 = \lambda_2 > \lambda_3)$

model selection, non-parametric, ...

centrum semiovale

streamline single-tensor

filtered single-tensor

volume fractions

SNR ≈ 10, b = 1000

volume fractions

SNR ≈ 10, b = 1000

end

James Malcolm malcolm@bwh.harvard.edu www.jgmalcolm.com Yogesh Rathi yogesh@bwh.harvard.edu www.yogesh-rathi.com