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Abstract. This chapter provides a survey of techniques for processing and visual-
ization of diffusion magnetic resonance imagery. We describe various approaches to
modeling the local diffusion structure from scanner measurements. We then look at
techniques to trace out neural pathways and infer global tissue structure. Last, we
draw upon these as building blocks for the visualization and analysis of the neural
architecture of individuals and groups.

18.1 Introduction

The advent of diffusion magnetic resonance imaging (dMRI) has provided
the opportunity for non-invasive investigation of neural architecture. While
structural MRI has long been used to image soft tissue and bone, dMRI pro-
vides additional insight into tissue microstructure by measuring its micro-
scopic diffusion characteristics. To accomplish this, the magnetic field induces
the movement of water while the presence of cell membranes, fibers, or other
macromolecules hinder this movement. By varying the direction and strength
of the magnetic fields, we essentially use the water molecules as a probe to
get a sense of the local tissue structure.

At the lowest level this diffusion pattern provides several insights. For
example, in fibrous tissue the dominant direction of allowed diffusion cor-
responds the underlying direction of fibers. In addition, quantifying the
anisotropy of the diffusion pattern can also provide useful biomarkers. Sev-
eral models have been proposed to interpret scanner measurements, ranging
from geometric abstractions to those with biological motivation. In Sec. 18.2
we will introduce various models and methods for interpreting the diffusion
measurements.

By connecting these local orientation models, tractography attempts to
reconstruct the neural pathways. Tracing out these pathways, we begin to see
how neurons originating from one region connect to other regions and how
well-defined those connections may be. Not only can we examine properties



2 J. G. Malcolm, Y. Rathi, C.-F. Westin

of the local tissue but we begin to see the global functional architecture of
the brain, but for such studies, the quality of the results relies heavily on the
chosen fiber representation and the method of reconstructing pathways. In
Sec. 18.3 we will describe several techniques for tracing out pathways.

At the highest level, neuroscientists can use the results of local modeling
and tractography to examine individuals or groups of individuals. In Sec. 18.4
we will survey approaches to segment tissue with boundaries indistinguishable
with structural MRI, apply network analysis to characterize the macroscopic
neural architecture, reconstruct fiber bundles from individual fiber traces, and
analyze groups of individuals.

18.2 Modeling

18.2.1 Imaging the tissue

The overall signal observed in an dMRI image voxel (millimetric) is the super-
position of signals from many underlying molecules probing the tissue (micro-
metric). Thus, the image contrast is related to the strength of water diffusion.
At each image voxel, diffusion is measured along a set of distinct gradients,
u1, ...,un ∈ R

3, producing the corresponding signal, s = [ s1, ..., sn ]T ∈ R
n.

A general weighted formulation that relates the measured diffusion signal to
the underlying fiber architecture may be written as,

si = s0

∑

j

wje
−bju

T
i Djui , (18.1)

where s0 is a baseline signal intensity, bj is the b-value, an acquisition-specific
constant, wj are convex weights, and Dj is a tensor describing a diffusion pat-
tern. One of the first acquisition schemes developed, diffusion tensor imaging
(DTI) utilizes these measurements to compute a Gaussian estimate of the
diffusion orientation and strength at each voxel [13, 22].

Going beyond this macroscopic description of diffusion, various higher
resolution acquisition techniques have been developed to capture more in-
formation about the diffusion pattern. One of the first techniques, Diffusion
Spectrum Imaging (DSI) measures the diffusion process at various scales
by sampling densely throughout the voxel [54, 129]. From this, the Fourier
transform is used to convert the signal to a diffusion probability distribution.
Due to the large number of samples acquired (usually more than 256 gradi-
ent directions), this scheme provides a much more accurate description of the
diffusion process. However, on account of the large acquisition time (of the
order of 1-2 hours per subject), this technique is not typically used in clinical
scans and its use is restricted to few research applications.

Instead of spatially sampling the diffusion in a lattice throughout the voxel,
a spherical shell sampling could be used [122]. Using this sampling technique,
the authors in [123] demonstrated that the shape of the diffusion probability
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could be recovered from the images acquired on a single spherical shell. This
significantly reduced the acquisition time, while providing most of the infor-
mation about the underlying diffusion in the tissue. This naturally led to the
application of techniques for estimating functions on a spherical domain. For
example, Q-ball imaging (QBI) demonstrated a spherical version of the Fourier
transform to reconstruct the probability diffusion as an isosurface [122].

To begin studying the microstructure of fibers with these imaging tech-
niques, we need models to interpret these diffusion measurements. Such mod-
els fall broadly into two categories: parametric and nonparametric.

18.2.2 Parametric models

One of the simplest models of diffusion is a Gaussian distribution: an ellip-
tic (anisotropic) shape indicating a strong diffusion direction while a more
rounded surface (isotropic) indicating less certainty in any particular direc-
tion (see Fig. 1(c)). While robust, assuming this Gaussian model is inadequate
in cases of mixed fiber presence or more complex orientations where the sig-
nal may indicate a non-Gaussian pattern [6,46,125]. To handle these complex
patterns, higher resolution imaging and more flexible parametric models have
been proposed including mixtures of tensors [2, 19, 61, 74, 99, 100,125] and di-
rectional functions [68, 88, 107]. While these typically require the number of
components to be fixed or estimated separately, more continuous mixtures
have also been proposed [65]. Further, biologically inspired models and tai-
lored acquisition schemes have been proposed to estimate physical tissue mi-
crostructure [9, 10]; see [5] for more.

18.2.3 Nonparametric models

Nonparametric models can often provide more information about the diffu-
sion pattern. Instead of modeling a discrete number of fibers as in parametric
models, nonparametric techniques estimate a spherical orientation distribu-
tion function indicating potential fiber directions and the relative certainty
thereof. For this estimation, an assortment of surface reconstruction methods
have been introduced: Q-ball imaging to directly transform the signal into
a probability surface [123], spherical harmonic representations [7, 37, 46, 58],
higher-order tensors [12,14,95], diffusion profile transforms [62,96], deconvolu-
tion with an assumed single-fiber signal response [64,120], and more. Fig. 1(e)
shows a spherical harmonic reconstruction of the signal. Compare this to the
original signal in Fig. 1(b).

It is important to keep in mind that there is a often distinction made
between the reconstructed diffusion orientation distribution function and the
putative fiber orientation distribution function; while most techniques esti-
mate the diffusion function, its relation to the underlying fiber function is still
an open problem. Spherical convolution is designed to directly transform the
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(a) Slice indicating region of interest

(b) Original signal (c) Single-tensor with axis

(d) Two-tensor axes (e) Spherical harmonic signal

Fig. 18.1. Comparison of various models within a coronal slice (a) passing through
the corpus callosum. In (b) the original signal appears noisy. In (c) a single tensor
fit provides a robust estimate of the principal diffusion direction. In (d) a two-tensor
model is fit to planar voxels and the two axes are reported [100]. In (e) spherical
harmonics provide a smoothed non-parametric estimate of the signal surface elimi-
nating much of the noise seen in (b) [37].

signal into a fiber distribution [4,7,62,120], yet diffusion sharpening strategies
have been developed to deal with Q-ball and diffusion functions [38].

While parametric methods directly describe the principal diffusion direc-
tions, interpreting the diffusion pattern from model independent representa-
tions typically involves determining the number and orientation of principal
diffusion directions present. A common technique is to find them as surface
maxima of the diffusion function [24,38,58,120], while another approach is to
decompose a high-order tensor representation of the diffusion function into a
mixture of rank-1 tensors [115].
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18.2.4 Regularization

As in all physical systems, the measurement noise plays a nontrivial role,
and so several techniques have been proposed to regularize the estimation.
One could start by directly regularizing the MRI signal by designing filters
based on the various signal noise models [1, 11, 71]. Alternatively, one could
estimate the diffusion tensor field and then correct these estimated quan-
tities [121]. For spherical harmonic modeling, a regularization term can be
been directly included in the least squares formulation [37,58]. Attempts such
as these to manipulate diffusion weighted images or tensor fields have re-
ceived considerable attention regarding appropriate algebraic and numeric
treatments [17, 44, 70, 121].

Instead of regularizing signal or model parameters directly, an alterna-
tive approach is to infer the underlying geometry of the vector field [112].
Another interesting approach treats each newly acquired diffusion image as
a new system measurement. Since diffusion tensors and spherical harmonics
can be estimated within a least-squares framework, one can use a Kalman
filter to update the estimate and optionally stop the scan when the model
parameters converge [105]. Further, this online technique can be used to alter
the gradient set so that, were the scan to be stopped early, the gradients up
to that point are optimally spread (active imaging) [35].

18.2.5 Characterizing tissue

The goal of diffusion imaging is to draw inferences from the diffusion measure-
ments. As a starting point, one often converts the diffusion weighted image
volumes to a scalar volume much like structural MRI or CT images. Starting
with the standard Gaussian diffusion tensor model, an assortment of scalar
measures have been proposed to quantify the size, orientation, and shape of
the diffusion pattern [15, 130]. For example, fractional anisotropy quantifies
the deviation from an isotropic tensor, an appealing quantity because it cor-
responds to the strength of diffusion while remaining invariant to orientation.
Derivatives of these scalar measures have also been proposed to capture more
information about the local neighborhood [69, 114], and these measures have
been extended to high-order tensors [97]. Further, a definition of generalized
anisotropy has been proposed to directly characterize anisotropy in terms of
variance in the signal, hence avoiding an assumed model [125]. While geomet-
ric in nature, studies have shown these to be reasonable proxy measures for
neural myelination [18,66,91]. Some studies have also examined the sensitivity
of such measures against image acquisition schemes [29, 131].

Meaningful visualization of diffusion images is difficult because of their
multivariate nature, and much is lost when reducing the spectral signal down
to scalar intensity volumes. Several geometric abstractions have been pro-
posed to convey more information. Since the most common voxel model is
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Fig. 18.2. Cutaway showing tractography throughout the left hemisphere colored
by FA to indicate diffusion strength [87]. From this view, the fornix and cingulum
bundle are visible near the center.

still the Gaussian diffusion tensor, most of the effort has focused on visualiz-
ing this basic element. The most common glyph is an ellipsoid simultaneously
representing the size, shape, and orientation; however, since tensors have six
free parameters, more elaborate representations have been proposed to visu-
alize these additional dimensions using color, shading, or subtle variations in
shape [42, 70, 126, 130]. Apart from tensors, visualization strategies for other
models have received comparatively little attention, the typical approach be-
ing to simply to visualize the diffusion isosurface at each voxel.

A vast literature exists on methods of acquisition, modeling, reconstruc-
tion, and visualization of diffusion images. For a comprehensive view, we sug-
gest [3, 36, 54, 89, 122,130].

18.3 Tractography

To compliment the wide assortment of techniques for signal modeling and re-
construction, there is an equally wide range of techniques to infer neural path-
ways. At the local level, one may categorize them either as tracing individual
connections between regions or as diffusing out to estimate the probability of
connection between regions. In addition, more global approaches have been
developed to consider, not just the local orientations, but the suitability of
entire paths when inferring connections.
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Fig. 18.3. Tractography from the center of the corpus callosum (seed region in
yellow). The single-tensor model (left) captures only the corona radiata and misses
the lateral pathways known to exist. The two-tensor method [87] (right) reveals
many of these missing pathways (highlighted in blue).

18.3.1 Deterministic tractography

Deterministic tractography involves directly following the diffusion pathways.
Typically, one places several starting points (seeds) in one region of interest
and iteratively traces from one voxel to the next, essentially path integration
in a vector field. One terminates these fiber bundles when the local diffusion
appears week or upon reaching a target region. Fig. 18.2 offers a glimpse from
inside the brain using this basic approach. Often additional regions are used as
masks to post-process results, e.g. pathways from region A but not touching
region B.

In the single tensor model, standard streamline tractography follows the
principal diffusion direction of the tensor [90], while multi-fiber models often
include techniques for determining the number of fibers present or when path-
ways branch [53, 57, 74]. Since individual voxel measurements may be unreli-
able, several techniques have been developed for regularization. For example,
using the estimate from the previous position [78,134] as well as filtering for-
mulations for path regularization [52] and model-based estimation [87]. The
choice of model and optimization mechanism can drastically effect the final
tracts. To illustrate, Fig. 18.3 shows tractography from the center of the cor-
pus callosum using a single-tensor model and a two-tensor model using the
filtered technique from [87].

18.3.2 Probabilistic tractography

While discrete paths intuitively represent the putative fiber pathways of in-
terest, they tend to ignore the inherent uncertainty in estimating the principle
diffusion directions in each voxel. Instead of tracing discrete paths to connect
voxels, one may instead query the probability of voxel-to-voxel connections
given the diffusion probability distributions reconstructed in each voxel.

Several approaches have been developed based on sampling. For exam-
ple, one might run streamline tensor tractography treating each as a Monte
Carlo sample; the more particles that take a particular path, the more likely
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that particular fiber pathway [20, 23, 72, 98]. Another approach would be to
consider more of the continuous diffusion field from Q-ball or other recon-
structions [16, 48, 99, 101,124,133]. By making high curvature paths unlikely,
path regularization can be naturally enforced within the probabilistic frame-
work. Another approach is to propagate an arrival-time isosurface from the
seed region out through the diffusion field, the front evolution force being a
function of the local diffusivity [16, 28, 119].

Using the full diffusion reconstruction to guide particle diffusion has the
advantage of naturally handling uncertainty in diffusion measurements, but
for that same reason it tends toward diffuse tractography and false-positive
connections. One option is to constrain diffusivity by fitting a model, thereby
ensuring definite diffusion directions yet still taking into account some uncer-
tainty [20,48,99]. A direct extension is to introduce a model selection mecha-
nism to allow for additional components where appropriate [19,47]. However,
one could stay with the nonparametric representations and instead sharpen
the diffusion profile to draw out the underlying fiber orientations [38, 118].

18.3.3 Global tractography

Despite advances in voxel modeling, discerning the underlying fiber configura-
tion has proven difficult. For example, looking at a single voxel, the symmetry
inherent in the diffusion measurements makes it difficult to tell if the observed
pattern represents a fiber curving through the voxel or instead represents a
fanning pattern. Reliable and accurate fiber resolution requires more infor-
mation than that of a single voxel. For example, instead of estimating the
fiber orientation, one could instead infer the geometry of the entire neighbor-
hood [113].

Going a step further, one could say that reliable and accurate connectivity
resolution requires even more information, beyond simply a voxel neighbor-
hood. In some respects, probabilistic tractography can be seen to take into
account more global information. By spawning thousands of particles, each
attempting to form an individual connection, probabilistic techniques are able
to explore more possibilities before picking those that are likely [98]. However,
if these particles still only look at the local signal as they propagate from one
voxel to the next, then they remain susceptible to local regions of uncertainty.
Even those with resampling schemes are susceptible since the final result is
still a product of the method used in local tracing [23, 133].

A natural step to address such problems is to introduce global connectivity
information into local optimization procedures of techniques mentioned above.
The work of [63] does this by extending the local Bayesian formulation in
[19] with an additional prior that draws upon global connectivity information
in regions of uncertainty. Similarly, one could use an energetic formulation
still with data likelihood and prior terms, but additionally introduce terms
governing the number of components present [43].
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Another approach is to treat the entire path as the parameter to be op-
timized and use global optimization schemes. For example, one could model
pathways as piecewise linear with a data likelihood term based on signal fit
and a prior on spatial coherence of those linear components [73,109]. One ad-
vantage of this path-based approach is that it somewhat obviates the need for
a multi-fiber voxel model; however, such a flexible global model dramatically
increases the computational burden.

An alternative formulation is to find geodesic paths through the volume.
Again using some form of data likelihood term, such methods then employ
techniques for front propagation to find globally optimal paths of connection
[45, 80, 92, 102,106].

Tractography is often used in group studies which typically require a com-
mon atlas for inter-subject comparison. Beginning with the end in mind, one
could determine a reference bundle as a template and use this to drive tractog-
raphy. This naturally ensures both the general geometric form of the solution
and a direct correspondence between subjects [41,51]. Alternatively, the tract
seeding and other algorithm parameters could be optimized until the tracts
(data driven) approach the reference (data prior) [30]. Since this requires pre-
specifying such a reference bundle, information that may be unavailable or
difficult to obtain, one could even incorporate the formulation of the reference
bundle into the optimization procedure itself [31].

18.3.4 Validation

In attempting to reconstruct neural pathways virtually, it is important to keep
in mind the inherent uncertainty in such reconstructions. The resolution of
dMRI scanners is at the level of 3-10mm3 while physical fiber axons are often
an order of magnitude smaller in diameter–a relationship which leaves much
room for error. Some noise or a complex fiber configuration could simply look
like a diffuse signal and cause probabilistic tractography to stop in its tracks,
while a few inaccurate voxel estimations could easily send the deterministic
tracing off course to produce a false-positive connection. Even global methods
could produce a tract that fits the signal quite well but incidentally jumps over
an actual boundary in one or two voxels it thinks are noise. Consequently, a
common question is: Are these pathways really present?

With this in mind, an active area of study is validating such results. Since
physical dissection often requires weeks of tedious effort, many techniques
have been used for validating these virtual dissections. A common starting
point is to employ synthetic and physical phantoms with known parameters
when evaluating new methods [104]. When possible, imaging before and af-
ter injecting radio-opaque dyes directly into the tissue can provide some of
the best evidence for comparison [33, 82]. Another powerful approach is to
apply bootstrap sampling or other non-parametric statistical tests to judge
the sensitivity and reproducibility of resulting tractography against algorithm
parameters, image acquisition, and even signal noise [29, 30, 49, 67, 77, 131].
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18.4 Applications

Having outlined various models and methods of reconstructing pathways, we
now briefly cover several methods of further analysis.

18.4.1 Volume segmentation

Medical image segmentation has a long history, much of it focused on scalar
intensity-based segmentation of anatomy. For neural segmentation, structural
MRI easily reveals the boundaries between gray-matter and white-matter, and
anatomic priors have helped further segment some internal structures [103];
however, the boundaries between many structures in the brain are remain in-
visible with structural MRI alone. The introduction of dMRI has provided new
discriminating evidence in such cases where tissue may appear homogeneous
on structural MRI or CT but contain distinct fiber populations.

To begin, most work has focused segmentation of the estimated tensor
fields. Using suitable metrics to compare tensors, these techniques often bor-
row directly from active contour or graph cut segmentation with the approach
of separating distributions. For example, one could define a Gaussian distribu-
tion of tensors to approximate a structure of interest [34,111]. For tissues with
more heterogeneous fiber populations, e.g. the corpus callosum as it bends,
such global parametric representations are unsuitable. For this, nonparametric
approaches are more appropriate at capturing the variation throughout such
structures [84,108]. Another approach to capture such variation is to limit the
parametric distributions to local regions of support, essentially robust edge
detection [76].

In Fig. 18.4 we see a graph cut segmentation of the corpus callosum [84].
The color-coded fractional anisotropy image is shown for visualization while
segmentation was performed on the underlying tensor data. If statistics are
computing ignoring the tensor manifold (Euclidean assumption), the final seg-
mentation fails Fig. 4(b). If statistics are computing via a Riemannian map-
ping that respects this structure, the final segmentation is accurate Fig. 4(c).
This highlights the need for appropriate algebraic treatment of tensors and
other non-Euclidean models.

An altogether different approach to segmenting a structure is to divide it
up according to where portions connect elsewhere. For example, the thalamus
contains several nuclei indistinguishable in standard MR or even with con-
trast. After tracing connections from the thalamus to the cortex, one study
demonstrated that grouping these connections revealed the underlying nu-
clei [21].

18.4.2 Fiber clustering

The raw output of full-brain tractography can produce hundreds of thousands
of such tracings, an overwhelming amount of information. One approach to
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(a) Initial seed regions (b) Euclidean mapping (c) Riemannian mapping

Fig. 18.4. Segmenting the corpus callosum using the graph cut technique from [84]
(side view). The Euclidean mapping (b) does not take into account the structure of
the underlying tensor manifold. The Riemannian mapping (c) takes this structure
into account when computing statistics and so produces a correct segmentation.

understanding and visualizing such results is to group individual tracings into
fiber bundles. Such techniques are typically based around two important de-
sign choices: the method of comparing fibers, and the method of clustering
those fibers.

In comparing two fibers, one often starts by defining a distance measure,
these typically being based on some point-to-point correspondence between
the fibers [32, 39, 93]. With this correspondence in hand, one of the most
common distances is then to take the mean closest point distance between
the two fibers (Hausdorff distance). An alternative is to transform each fiber
to a new vector space with a natural norm, e.g. a fiber of any length can be
encoded with only the mean and covariance of points along its path and then
use the L2 distance [25]. An altogether different approach is to consider the
spatial overlap between fibers [127, 128]. Since full-brain tractography often
contains many small broken fragments as it tries to trace out bundles, such
fragments are often separated from their actual cluster. Measures of spatial
overlap may be more robust in such cases. In each of these methods, fibers were
only considered as sequences of points, i.e. connections and orientations were
ignored. Recent work demonstrates that incorporating such considerations
provides robust descriptors of fiber bundles [40].

Based on these distances, several methods have been developed to cluster
the fibers. Spectral methods typically begin with the construction of a Gram
matrix encoding the pairwise affinity between any two fibers. After which
normalized cuts can be applied to partition the Gram matrix and hence the
fibers [25]. Affinity propagation has recently been demonstrated as an efficient
and robust alternative which automatically determines the number of clusters
to support a specified cluster size preference [79, 86]. In Fig. 18.5 shows how
clustering can automatically reveal known structures and provide a more co-
herent view of the brain. In addition, clustering can be used to judge outliers.
For example, Fig. 18.6 reveals several streamlines that appear to have gone
off track relative to the cluster centers.

Another clustering approach is to use the inner product space itself. For
example, one can efficiently group directly on the induced manifold by iter-
atively joining fibers most similar until the desired clustering emerges [128].
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Fig. 18.5. Full-brain streamline tractography clustered using affinity propagation
[86]. Viewed from the outside (left) and inside cutting away the left hemisphere
(right). Among the visible structures, we see the cingulum bundle (yellow), internal
capsule (red), and arcuate (purple).

Fig. 18.6. Fronto-occipital fibers from the right hemisphere using streamline trac-
tography and clustered (left) [86]. Viewing the cluster centers (right) we see several
fibers (red) that appear to have wandered off the pathway.

To avoid construction of the large Gram matrix, variants of expectation max-
imization have been demonstrated to iteratively cluster fibers, an approach
that naturally lends itself to incorporating anatomic priors [83, 93, 127]. Al-
ternatively, one can begin with the end in mind by registering a reference
fiber bundle template to patients thus obviating any need for later spatial
normalization or correspondence [31].

18.4.3 Connectivity

While tissue segmentation can provide global cues of neural organization, it
tells little of the contribution of individual elements. Similarly, while clustered
tracings are easily visualized, deciphering the flood of information from full-
brain tractography demands more comprehensive quantitative analysis. For
this, much has been borrowed from network analysis to characterize the neural
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Fig. 18.7. The brain viewed as a network of weighted connections. Each edge
represents a possible connection and is weighted by the strength of that path. Many
techniques from network analysis are applied to reveal hubs and subnetworks within
this macroscopic view.

topology. To start, instead of segmenting fibers into bundles, one can begin
by classifying voxels into hubs or subregions into subnetworks [50,55,56,117].

Dividing the brain up into major functional hubs, one can then view it as
a graphical network as in Fig. 18.7. Each of these edges is then often weighted
as a function of connection strength [56], but may also incorporate functional
correlation to give further evidence of connectivity.

One of the first results of such analysis was the discovery of dense hubs
linked by short pathways, a characteristic observed in many complex physi-
cal systems (small-world phenomena). Another interesting finding came from
combining anatomic connections from dMRI with neuronal activity provided
by fMRI [59]. They found that areas which are functionally connected are
often not structurally connected, hence tractography alone does not provide
the entire picture.

For a recent review of this emerging field of structural and functional
network analysis, we recommend [26].

18.4.4 Tissue analysis

In forming population studies, there are several approaches for framing the
analysis among patients. For example, voxel-based studies examine tissue
characteristics in regions of interest [8]. Discriminant analysis has been ap-
plied to determine such regions [27]. Alternatively, one could also perform
regression on the full image volume taking into account not only variation in
diffusion but also in the full anatomy [110]. In contrast, tract-based studies
incorporate the results of tractography to use fiber pathways as the frame of
reference [39, 116], and several studies have demonstrated the importance of
taking into account local fluctuations in estimated diffusion [32,51,83,94,132].
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Fig. 18.8. Plotting FA as a function of arc-length to examine local fluctuations.
Fibers are selected that connect the left and right seed regions (green). Notice how
the FA from single-tensor (blue) is lower in regions of crossing compared to two-
tensor FA (red).

A common approach in many of these studies is to focus on characterizing
individual pathways or bundles. To illustrate this analysis, Fig. 18.8 shows
fibers connecting a small region in each hemisphere. We then average FA
plotted along the bundle as a function of arc-length. Further, we plot the FA
from both single- and two-tensor models to show how different models often
produce very different tissue properties [85].

Several reviews exist documenting the application and findings of using
various methods [60, 75, 81].

18.5 Summary

Diffusion MRI has provided an unprecedented view of neural architecture.
With each year, we develop better image acquisition schemes, more appropri-
ate diffusion models, more accurate pathway reconstruction, and more sensi-
tive analysis.

In this survey, we began with an overview of the various imaging techniques
and diffusion models. While many acquisition sequences have become widely
distributed for high angular resolution imaging, work continues in developing
sequences and models capable of accurate resolution of biological properties
such as axon diameter and degree of myelination [5, 10]. We then reviewed
various parametric models starting with the diffusion tensor on up to vari-
ous mixture models as well as high-order tensors. Work continues to develop
more accurate and reliable model estimation by incorporating information
from neighboring voxels [87,113]. Further, scalar measures derived from these
models similarly benefit from incorporating neighborhood information [114].
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Next we outlined various methods of tractography to infer connectivity.
Broadly, these techniques took either a deterministic or probabilistic ap-
proach. We also documented the recent trend toward global approaches, those
that combine local voxel-to-voxel tracing with a sense of the full path [43,109].
Even with such considerations, tractography is has proven quite sensitive to
image acquisition and initial conditions, so much work has gone into valida-
tion. Common techniques are the use of physical phantoms [104] or statistical
tests like bootstrap analysis [30, 67, 77].

Finally, we briefly introduced several machine learning approaches to make
sense of the information found in diffusion imagery. Starting with segmenta-
tion, several techniques for scalar intensity segmentation have been extended
to dMRI. With the advent of full-brain tractography providing hundreds of
thousands of fiber paths, the need to cluster connections into bundles has
become increasingly important. The application of network analysis to con-
nectivity appears to be an emerging area of research, especially in combination
with alternate imaging modalities [26]. Finally, we noted several approaches
to the analysis of neural tissue itself in regions of interest or along pathways.
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versité de Lausanne, 2005.

55. P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, V. J. Wedeen,
and O. Sporns. Mapping the structural core of human cerebral cortex. PLoS
Biology, 6(7):e159, 2008.

56. P. Hagmann, M. Kurant, X. Gigandet, P. Thiran, V. J. Wedeen, R. Meuli, and
J. P. Thiran. Mapping human whole-brain structural networks with diffusion
MRI. PLoS ONE, 2(7):e597, 2007.

57. P. Hagmann, T. Reese, W.-Y. Tseng, R. Meuli, J.-P. Thiran, and V. J. Wedeen.
Diffusion spectrum imaging tractography in complex cerebral white matter: An
investigation of the centrum semiovale. In Int. Symp. on Magnetic Resonance
in Medicine (ISMRM), page 623, 2004.

58. C. Hess, P. Mukherjee, E. Han, D. Xu, and D. Vigneron. Q-ball reconstruction
of multimodal fiber orientations using the spherical harmonic basis. Magnetic
Resonance in Medicine, 56:104–117, 2006.



18 Processing and Visualization of dMRI 19

59. C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meulic,
and P. Hagmann. Predicting human resting-state functional connectivity from
structural connectivity. Proc. National Academy of Sciences, 106(6):2035–2040,
2009.

60. M. A. Horsfield and D. K. Jones. Neuropsychiatric applications of DTI – A
review. NMR in Biomedicine, 15:587–593, 2002.

61. T. Hosey, G. Williams, and R. Ansorge. Inference of multiple fiber orientations
in high angular resolution diffusion imaging. Magnetic Resonance in Medicine,
54:1480–1489, 2005.

62. K. Jansons and D. C. Alexander. Persistent angular structure: New insights
from diffusion MRI data. Inverse Problems, 19:1031–1046, 2003.

63. S. Jbabdi, M. Woolrich, J. Andersson, and T. Behrens. A bayesian framework
for global tractography. NeuroImage, 37:116–129, 2007.

64. B. Jian and B. Vemuri. A unified computational framework for deconvolution
to reconstruct multiple fibers from diffusion weighted MRI. Trans. on Med.
Imag., 26(11):1464–1471, 2007.
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