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SUMMARY

Computer vision encompasses a host of computational techniques to process visual

information. Medical imagery is one particular area of application where data comes in var-

ious forms: X-rays, ultrasound probes, MRI volumes, EEG recordings, NMR spectroscopy,

etc. This dissertation is concerned with techniques for accurate reconstruction of neural

pathways from diffusion magnetic resonance imagery (dMRI).

This dissertation describes a filtered approach to neural tractography. Existing methods

independently estimate the diffusion model at each voxel so there is no running knowledge

of confidence in the estimation process. We propose using tractography to drive estimation

of the local diffusion model. Toward this end, we formulate fiber tracking as recursive

estimation: at each step of tracing the fiber, the current estimate is guided by those previous.

We argue that this approach is more accurate than conventional techniques. Experi-

ments demonstrate that this filtered approach significantly improves the angular resolution

at crossings and branchings. Further, we confirm its ability to trace through regions known

to contain such crossing and branching while providing inherent path regularization.

We also argue that this approach is flexible. Experiments demonstrate using various

models in the estimation process, specifically combinations of Watson directional functions

and rank-2 tensors. Further, this dissertation includes an extension of the technique to

weighted mixtures using a constrained filter.

xii



CHAPTER I

BACKGROUND

1.1 Overview of Diffusion Imaging

The advent of diffusion magnetic resonance imaging (dMRI) has provided the opportu-

nity for non-invasive investigation of neural architecture. While structural MRI has long

been used to image soft tissue and bone, dMRI provides additional insight into tissue mi-

crostructure by measuring its microscopic diffusion characteristics. To accomplish this, the

magnetic field induces the movement of water while the presence of cell membranes, fibers,

or other macromolecules hinder this movement. By varying the direction and strength of

the magnetic fields, we essentially use the water molecules as a probe to get a sense of the

local tissue structure.

At the lowest level this diffusion pattern provides several insights. For example, in fibrous

tissue the dominant direction of allowed diffusion corresponds the underlying direction of

fibers. In addition, quantifying the anisotropy of the diffusion pattern can also provide

useful biomarkers. Several models have been proposed to interpret scanner measurements,

ranging from geometric abstractions to those with biological motivation. In Section 1.2 we

will introduce various models and methods for interpreting the diffusion measurements.

By connecting these local orientation models, tractography attempts to reconstruct the

neural pathways. Tracing out these pathways, we begin to see how neurons originating from

one region connect to other regions and how well-defined those connections may be. Not

only can we examine properties of the local tissue but we begin to see the global functional

architecture of the brain, but for such studies, the quality of the results relies heavily on

the chosen fiber representation and the method of reconstructing pathways. In Section 1.3

we will describe several techniques for tracing out pathways.

At the highest level, neuroscientists can use the results of local modeling and trac-

tography to examine individuals or groups of individuals. In Section 1.4 we will survey
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approaches to segment tissue with boundaries indistinguishable with structural MRI, ap-

ply network analysis to characterize the macroscopic neural architecture, reconstruct fiber

bundles from individual fiber traces, and analyze groups of individuals.

1.2 Modeling

1.2.1 Imaging the tissue

The overall signal observed in an dMRI image voxel (millimetric) is the superposition of

signals from many underlying molecules probing the tissue (micrometric). Thus, the image

contrast is related to the strength of water diffusion. At each image voxel, diffusion is

measured along a set of distinct gradients, u1, ...,un ∈ R
3, producing the corresponding

signal, s = [ s1, ..., sn ]T ∈ R
n. A general weighted formulation that relates the measured

diffusion signal to the underlying fiber architecture may be written as,

si = s0

∑

j

wje
−bju

T
i Djui , (1.1)

where s0 is a baseline signal intensity, bj is the b-value, an acquisition-specific constant, wj

are convex weights, and Dj is a tensor describing a diffusion pattern. One of the first

acquisition schemes developed, diffusion tensor imaging (DTI) utilizes these measurements

to compute a Gaussian estimate of the diffusion orientation and strength at each voxel

[14, 26].

Going beyond this macroscopic description of diffusion, various higher resolution ac-

quisition techniques have been developed to capture more information about the diffusion

pattern. One of the first techniques, Diffusion Spectrum Imaging (DSI) measures the diffu-

sion process at various scales by sampling densely throughout the voxel [61,151]. From this,

the Fourier transform is used to convert the signal to a diffusion probability distribution.

Due to the large number of samples acquired (usually more than 256 gradient directions),

this scheme provides a much more accurate description of the diffusion process. However, on

account of the large acquisition time (of the order of 1-2 hours per subject), this technique

is not typically used in clinical scans and its use is restricted to few research applications.

Instead of spatially sampling the diffusion in a lattice throughout the voxel, a spherical

shell sampling could be used [143]. Using this sampling technique, the authors in [144]
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demonstrated that the shape of the diffusion probability could be recovered from the im-

ages acquired on a single spherical shell. This significantly reduced the acquisition time,

while providing most of the information about the underlying diffusion in the tissue. This

naturally led to the application of techniques for estimating functions on a spherical do-

main. For example, Q-ball imaging (QBI) demonstrated a spherical version of the Fourier

transform to reconstruct the probability diffusion as an isosurface [143].

To begin studying the microstructure of fibers with these imaging techniques, we need

models to interpret these diffusion measurements. Such models fall broadly into two cate-

gories: parametric and nonparametric.

1.2.2 Parametric models

One of the simplest models of diffusion is a Gaussian distribution: an elliptic (anisotropic)

shape indicating a strong diffusion direction while a more rounded surface (isotropic) indi-

cating less certainty in any particular direction (see Figure 1.1c). While robust, assuming

this Gaussian model is inadequate in cases of mixed fiber presence or more complex ori-

entations where the signal may indicate a non-Gaussian pattern [6, 51, 146]. To handle

these complex patterns, higher resolution imaging and more flexible parametric models

have been proposed including mixtures of tensors [2,22,69,84,117,118,146] and directional

functions [78,105,127]. While these typically require the number of components to be fixed

or estimated separately, more continuous mixtures have also been proposed [73]. Further,

biologically inspired models and tailored acquisition schemes have been proposed to estimate

physical tissue microstructure [10,11]; see [5] for more.

1.2.3 Nonparametric models

Nonparametric models can often provide more information about the diffusion pattern.

Instead of modeling a discrete number of fibers as in parametric models, nonparametric

techniques estimate a spherical orientation distribution function indicating potential fiber

directions and the relative certainty thereof. For this estimation, an assortment of surface

reconstruction methods have been introduced: Q-ball imaging to directly transform the

signal into a probability surface [144], spherical harmonic representations [7, 41, 51, 66],
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higher-order tensors [13, 17, 113], diffusion profile transforms [70, 114], deconvolution with

an assumed single-fiber signal response [72, 141], and more. Figure 1.1e shows a spherical

harmonic reconstruction of the signal. Compare this to the original signal in Figure 1.1b.

It is important to keep in mind that there is a often distinction made between the

reconstructed diffusion orientation distribution function and the putative fiber orientation

distribution function; while most techniques estimate the diffusion function, its relation to

the underlying fiber function is still an open problem. Spherical convolution is designed to

directly transform the signal into a fiber distribution [4,7,70,141], yet diffusion sharpening

strategies have been developed to deal with Q-ball and diffusion functions [43].

While parametric methods directly describe the principal diffusion directions, inter-

preting the diffusion pattern from model independent representations typically involves

determining the number and orientation of principal diffusion directions present. A com-

mon technique is to find them as surface maxima of the diffusion function [28, 43, 66, 141],

while another approach is to decompose a high-order tensor representation of the diffusion

function into a mixture of rank-1 tensors [135].

1.2.4 Regularization

As in all physical systems, the measurement noise plays a nontrivial role, and so several

techniques have been proposed to regularize the estimation. One could start by directly

regularizing the MRI signal by designing filters based on the various signal noise models

[1,12,81]. Alternatively, one could estimate the diffusion tensor field and then correct these

estimated quantities [142]. For spherical harmonic modeling, a regularization term can be

been directly included in the least squares formulation [41, 66]. Attempts such as these to

manipulate diffusion weighted images or tensor fields have received considerable attention

regarding appropriate algebraic and numeric treatments [20,49,80,142].

Instead of regularizing signal or model parameters directly, an alternative approach is

to infer the underlying geometry of the vector field [132]. Another interesting approach

treats each newly acquired diffusion image as a new system measurement. Since diffusion

tensors and spherical harmonics can be estimated within a least-squares framework, one can
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use a Kalman filter to update the estimate and optionally stop the scan when the model

parameters converge [123]. Further, this online technique can be used to alter the gradient

set so that, were the scan to be stopped early, the gradients up to that point are optimally

spread (active imaging) [39].

1.2.5 Characterizing tissue

The goal of diffusion imaging is to draw inferences from the diffusion measurements. As a

starting point, one often converts the diffusion weighted image volumes to a scalar volume

much like structural MRI or CT images. Starting with the standard Gaussian diffusion

tensor model, an assortment of scalar measures have been proposed to quantify the size,

orientation, and shape of the diffusion pattern [18,152]. For example, fractional anisotropy

quantifies the deviation from an isotropic tensor, an appealing quantity because it corre-

sponds to the strength of diffusion while remaining invariant to orientation. Derivatives of

these scalar measures have also been proposed to capture more information about the local

neighborhood [79,134], and these measures have been extended to high-order tensors [115].

Further, a definition of generalized anisotropy has been proposed to directly characterize

anisotropy in terms of variance in the signal, hence avoiding an assumed model [146]. While

geometric in nature, studies have shown these to be reasonable proxy measures for neural

myelination [21,74,108]. Some studies have also examined the sensitivity of such measures

against image acquisition schemes [33,153].

Meaningful visualization of diffusion images is difficult because of their multivariate

nature, and much is lost when reducing the spectral signal down to scalar intensity volumes.

Several geometric abstractions have been proposed to convey more information. Since the

most common voxel model is still the Gaussian diffusion tensor, most of the effort has focused

on visualizing this basic element. The most common glyph is an ellipsoid simultaneously

representing the size, shape, and orientation; however, since tensors have six free parameters,

more elaborate representations have been proposed to visualize these additional dimensions

using color, shading, or subtle variations in shape [47, 80, 148, 152]. Apart from tensors,

visualization strategies for other models have received comparatively little attention, the
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typical approach being to simply to visualize the diffusion isosurface at each voxel.

A vast literature exists on methods of acquisition, modeling, reconstruction, and visu-

alization of diffusion images. For a comprehensive view, we suggest [3,40,61,106,143,152].

1.3 Tractography

To compliment the wide assortment of techniques for signal modeling and reconstruction,

there is an equally wide range of techniques to infer neural pathways. At the local level,

one may categorize them either as tracing individual connections between regions or as

diffusing out to estimate the probability of connection between regions. In addition, more

global approaches have been developed to consider, not just the local orientations, but the

suitability of entire paths when inferring connections.

1.3.1 Deterministic tractography

Deterministic tractography involves directly following the diffusion pathways. Typically, one

places several starting points (seeds) in one region of interest and iteratively traces from one

voxel to the next, essentially path integration in a vector field. One terminates these fiber

bundles when the local diffusion appears week or upon reaching a target region. Figure 1.2

offers a glimpse from inside the brain using this basic approach. Often additional regions

are used as masks to post-process results, e.g . pathways from region A but not touching

region B.

In the single tensor model, standard streamline tractography follows the principal dif-

fusion direction of the tensor [107], while multi-fiber models often include techniques for

determining the number of fibers present or when pathways branch [60, 64, 84]. Since in-

dividual voxel measurements may be unreliable, several techniques have been developed

for regularization. For example, using the estimate from the previous position [88, 157] as

well as filtering formulations for path regularization [59] and model-based estimation [101].

The choice of model and optimization mechanism can drastically effect the final tracts. To

illustrate, Figure 1.3 shows tractography from the center of the corpus callosum using a

single-tensor model and a two-tensor model using the filtered technique from [101].
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1.3.2 Probabilistic tractography

While discrete paths intuitively represent the putative fiber pathways of interest, they tend

to ignore the inherent uncertainty in estimating the principle diffusion directions in each

voxel. Instead of tracing discrete paths to connect voxels, one may instead query the

probability of voxel-to-voxel connections given the diffusion probability distributions recon-

structed in each voxel.

Several approaches have been developed based on sampling. For example, one might run

streamline tensor tractography treating each as a Monte Carlo sample; the more particles

that take a particular path, the more likely that particular fiber pathway [23, 27, 82, 116].

Another approach would be to consider more of the continuous diffusion field from Q-ball

or other reconstructions [19,53,117,119,145,156]. By making high curvature paths unlikely,

path regularization can be naturally enforced within the probabilistic framework. Another

approach is to propagate an arrival-time isosurface from the seed region out through the

diffusion field, the front evolution force being a function of the local diffusivity [19,32,140].

Using the full diffusion reconstruction to guide particle diffusion has the advantage

of naturally handling uncertainty in diffusion measurements, but for that same reason it

tends toward diffuse tractography and false-positive connections. One option is to constrain

diffusivity by fitting a model, thereby ensuring definite diffusion directions yet still taking

into account some uncertainty [23, 53, 117]. A direct extension is to introduce a model

selection mechanism to allow for additional components where appropriate [22,52]. However,

one could stay with the nonparametric representations and instead sharpen the diffusion

profile to draw out the underlying fiber orientations [43,139].

1.3.3 Global tractography

Despite advances in voxel modeling, discerning the underlying fiber configuration has proven

difficult. For example, looking at a single voxel, the symmetry inherent in the diffusion mea-

surements makes it difficult to tell if the observed pattern represents a fiber curving through

the voxel or instead represents a fanning pattern. Reliable and accurate fiber resolution re-

quires more information than that of a single voxel. For example, instead of estimating the
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fiber orientation, one could instead infer the geometry of the entire neighborhood [133].

Going a step further, one could say that reliable and accurate connectivity resolution re-

quires even more information, beyond simply a voxel neighborhood. In some respects, prob-

abilistic tractography can be seen to take into account more global information. By spawn-

ing thousands of particles, each attempting to form an individual connection, probabilistic

techniques are able to explore more possibilities before picking those that are likely [116].

However, if these particles still only look at the local signal as they propagate from one voxel

to the next, then they remain susceptible to local regions of uncertainty. Even those with

resampling schemes are susceptible since the final result is still a product of the method

used in local tracing [27,156].

A natural step to address such problems is to introduce global connectivity information

into local optimization procedures of techniques mentioned above. The work of [71] does

this by extending the local Bayesian formulation in [22] with an additional prior that draws

upon global connectivity information in regions of uncertainty. Similarly, one could use an

energetic formulation still with data likelihood and prior terms, but additionally introduce

terms governing the number of components present [48].

Another approach is to treat the entire path as the parameter to be optimized and

use global optimization schemes. For example, one could model pathways as piecewise

linear with a data likelihood term based on signal fit and a prior on spatial coherence of

those linear components [83, 129]. One advantage of this path-based approach is that it

somewhat obviates the need for a multi-fiber voxel model; however, such a flexible global

model dramatically increases the computational burden.

An alternative formulation is to find geodesic paths through the volume. Again using

some form of data likelihood term, such methods then employ techniques for front propa-

gation to find globally optimal paths of connection [50,91,109,120,124].

Tractography is often used in group studies which typically require a common atlas for

inter-subject comparison. Beginning with the end in mind, one could determine a reference

bundle as a template and use this to drive tractography. This naturally ensures both the

general geometric form of the solution and a direct correspondence between subjects [46,58].
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Alternatively, the tract seeding and other algorithm parameters could be optimized until

the tracts (data driven) approach the reference (data prior) [34]. Since this requires pre-

specifying such a reference bundle, information that may be unavailable or difficult to obtain,

one could even incorporate the formulation of the reference bundle into the optimization

procedure itself [35].

1.3.4 Validation

In attempting to reconstruct neural pathways virtually, it is important to keep in mind the

inherent uncertainty in such reconstructions. The resolution of dMRI scanners is at the level

of 1-3mm while physical fiber axons are often an order of magnitude smaller in diameter–a

relationship which leaves much room for error. Some noise or a complex fiber configuration

could simply look like a diffuse signal and cause probabilistic tractography to stop in its

tracks, while a few inaccurate voxel estimations could easily send the deterministic tracing

off course to produce a false-positive connection. Even global methods could produce a

tract that fits the signal quite well but incidentally jumps over an actual boundary in one

or two voxels it thinks are noise. Consequently, a common question is: Are these pathways

really present?

With this in mind, an active area of study is validating such results. Since physical dis-

section often requires weeks of tedious effort, many techniques have been used for validating

these virtual dissections. A common starting point is to employ synthetic and physical phan-

toms with known parameters when evaluating new methods [122]. When possible, imaging

before and after injecting radio-opaque dyes directly into the tissue can provide some of the

best evidence for comparison [37,93]. Another powerful approach is to apply bootstrap sam-

pling or other non-parametric statistical tests to judge the sensitivity and reproducibility

of resulting tractography against algorithm parameters, image acquisition, and even signal

noise [33, 34,54,76,87,153].

1.4 Applications

Having outlined various models and methods of reconstructing pathways, we now briefly

cover several methods of further analysis.
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1.4.1 Volume segmentation

Medical image segmentation has a long history, much of it focused on scalar intensity-

based segmentation of anatomy. For neural segmentation, structural MRI easily reveals the

boundaries between gray-matter and white-matter, and anatomic priors have helped further

segment some internal structures [121]; however, the boundaries between many structures

in the brain are remain invisible with structural MRI alone. The introduction of dMRI has

provided new discriminating evidence in such cases where tissue may appear homogeneous

on structural MRI or CT but contain distinct fiber populations.

To begin, most work has focused segmentation of the estimated tensor fields. Using

suitable metrics to compare tensors, these techniques often borrow directly from active

contour or graph cut segmentation with the approach of separating distributions. For ex-

ample, one could define a Gaussian distribution of tensors to approximate a structure of

interest [38, 131]. For tissues with more heterogeneous fiber populations, e.g . the corpus

callosum as it bends, such global parametric representations are unsuitable. For this, non-

parametric approaches are more appropriate at capturing the variation throughout such

structures [96, 128]. Another approach to capture such variation is to limit the parametric

distributions to local regions of support, essentially robust edge detection [86].

In Figure 1.4 we see a graph cut segmentation of the corpus callosum [96]. The color-

coded fractional anisotropy image is shown for visualization while segmentation was per-

formed on the underlying tensor data. If statistics are computing ignoring the tensor man-

ifold (Euclidean assumption), the final segmentation fails Figure 1.4b. If statistics are

computing via a Riemannian mapping that respects this structure, the final segmentation

is accurate Figure 1.4c. This highlights the need for appropriate algebraic treatment of

tensors and other non-Euclidean models.

An altogether different approach to segmenting a structure is to divide it up according

to where portions connect elsewhere. For example, the thalamus contains several nuclei

indistinguishable in standard MR or even with contrast. After tracing connections from the

thalamus to the cortex, one study demonstrated that grouping these connections revealed

the underlying nuclei [24].
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1.4.2 Fiber clustering

The raw output of full-brain tractography can produce hundreds of thousands of such

tracings, an overwhelming amount of information. One approach to understanding and

visualizing such results is to group individual tracings into fiber bundles. Such techniques

are typically based around two important design choices: the method of comparing fibers,

and the method of clustering those fibers.

In comparing two fibers, one often starts by defining a distance measure, these typically

being based on some point-to-point correspondence between the fibers [36, 44, 111]. With

this correspondence in hand, one of the most common distances is then to take the mean

closest point distance between the two fibers (Hausdorff distance). An alternative is to

transform each fiber to a new vector space with a natural norm, e.g . a fiber of any length

can be encoded with only the mean and covariance of points along its path and then use the

L2 distance [29]. An altogether different approach is to consider the spatial overlap between

fibers [149,150]. Since full-brain tractography often contains many small broken fragments

as it tries to trace out bundles, such fragments are often separated from their actual cluster.

Measures of spatial overlap may be more robust in such cases. In each of these methods,

fibers were only considered as sequences of points, i.e. connections and orientations were

ignored. Recent work demonstrates that incorporating such considerations provides robust

descriptors of fiber bundles [45].

Based on these distances, several methods have been developed to cluster the fibers.

Spectral methods typically begin with the construction of a Gram matrix encoding the

pairwise affinity between any two fibers. After which normalized cuts can be applied to

partition the Gram matrix and hence the fibers [29]. Affinity propagation has recently been

demonstrated as an efficient and robust alternative which automatically determines the

number of clusters to support a specified cluster size preference [89,99]. In Figure 1.5 shows

how clustering can automatically reveal known structures and provide a more coherent view

of the brain. In addition, clustering can be used to judge outliers. For example, Figure 1.6

reveals several streamlines that appear to have gone off track relative to the cluster centers.
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Another clustering approach is to use the inner product space itself. For example, one

can efficiently group directly on the induced manifold by iteratively joining fibers most

similar until the desired clustering emerges [150]. To avoid construction of the large Gram

matrix, variants of expectation maximization have been demonstrated to iteratively cluster

fibers, an approach that naturally lends itself to incorporating anatomic priors [94, 111,

149]. Alternatively, one can begin with the end in mind by registering a reference fiber

bundle template to patients thus obviating any need for later spatial normalization or

correspondence [35].

1.4.3 Connectivity

While tissue segmentation can provide global cues of neural organization, it tells little of the

contribution of individual elements. Similarly, while clustered tracings are easily visualized,

deciphering the flood of information from full-brain tractography demands more compre-

hensive quantitative analysis. For this, much has been borrowed from network analysis to

characterize the neural topology. To start, instead of segmenting fibers into bundles, one

can begin by classifying voxels into hubs or subregions into subnetworks [55,62,63,138].

Dividing the brain up into major functional hubs, one can then view it as a graphical

network as in Figure 1.7. Each of these edges is then often weighted as a function of

connection strength [63], but may also incorporate functional correlation to give further

evidence of connectivity.

One of the first results of such analysis was the discovery of dense hubs linked by

short pathways, a characteristic observed in many complex physical systems (small-world

phenomena). Another interesting finding came from combining anatomic connections from

dMRI with neuronal activity provided by fMRI [67]. They found that areas which are

functionally connected are often not structurally connected, hence tractography alone does

not provide the entire picture.

For a recent review of this emerging field of structural and functional network analysis,

we recommend [30].
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1.4.4 Tissue analysis

In forming population studies, there are several approaches for framing the analysis among

patients. For example, voxel-based studies examine tissue characteristics in regions of in-

terest [9]. Discriminant analysis has been applied to determine such regions [31]. Alter-

natively, one could also perform regression on the full image volume taking into account

not only variation in diffusion but also in the full anatomy [130]. In contrast, tract-based

studies incorporate the results of tractography to use fiber pathways as the frame of refer-

ence [44,137], and several studies have demonstrated the importance of taking into account

local fluctuations in estimated diffusion [36,58,94,112,154].

A common approach in many of these studies is to focus on characterizing individual

pathways or bundles. To illustrate this analysis, Figure 1.8 shows fibers connecting a small

region in each hemisphere. We then average FA plotted along the bundle as a function of

arc-length. Further, we plot the FA from both single- and two-tensor models to show how

different models often produce very different tissue properties [97].

Several reviews exist documenting the application and findings of using various methods

[68,85,92].

1.5 Summary

Diffusion MRI has provided an unprecedented view of neural architecture. With each

year, we develop better image acquisition schemes, more appropriate diffusion models, more

accurate pathway reconstruction, and more sensitive analysis.

In this survey, we began with an overview of the various imaging techniques and diffusion

models. While many acquisition sequences have become widely distributed for high angular

resolution imaging, work continues in developing sequences and models capable of accurate

resolution of biological properties such as axon diameter and degree of myelination [5,

11]. We then reviewed various parametric models starting with the diffusion tensor on

up to various mixture models as well as high-order tensors. Work continues to develop

more accurate and reliable model estimation by incorporating information from neighboring

voxels [101,133]. Further, scalar measures derived from these models similarly benefit from
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incorporating neighborhood information [134].

Next we outlined various methods of tractography to infer connectivity. Broadly, these

techniques took either a deterministic or probabilistic approach. We also documented the

recent trend toward global approaches, those that combine local voxel-to-voxel tracing with

a sense of the full path [48,129]. Even with such considerations, tractography is has proven

quite sensitive to image acquisition and initial conditions, so much work has gone into

validation. Common techniques are the use of physical phantoms [122] or statistical tests

like bootstrap analysis [34, 76,87].

Finally, we briefly introduced several machine learning approaches to make sense of the

information found in diffusion imagery. Starting with segmentation, several techniques for

scalar intensity segmentation have been extended to dMRI. With the advent of full-brain

tractography providing hundreds of thousands of fiber paths, the need to cluster connections

into bundles has become increasingly important. The application of network analysis to

connectivity appears to be an emerging area of research, especially in combination with

alternate imaging modalities [30]. Finally, we noted several approaches to the analysis of

neural tissue itself in regions of interest or along pathways.
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(a) Slice indicating region of interest

(b) Original signal (c) Single-tensor with axis

(d) Two-tensor axes (e) Spherical harmonic signal

Figure 1.1: Comparison of various models within a coronal slice (a) passing through the
corpus callosum. In (b) the original signal appears noisy. In (c) a single tensor fit provides
a robust estimate of the principal diffusion direction. In (d) a two-tensor model is fit to
planar voxels and the two axes are reported [118]. In (e) spherical harmonics provide a
smoothed non-parametric estimate of the signal surface eliminating much of the noise seen
in (b) [41].
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Figure 1.2: Cutaway showing tractography throughout the left hemisphere colored by FA
to indicate diffusion strength [101]. From this view, the fornix and cingulum bundle are
visible near the center.

Figure 1.3: Tractography from the center of the corpus callosum (seed region in yellow). The
single-tensor model (left) captures only the corona radiata and misses the lateral pathways
known to exist. The two-tensor method [101] (right) reveals many of these missing pathways
(highlighted in blue). (From [101])
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(a) Initial seed regions (b) Euclidean mapping (c) Riemannian mapping

Figure 1.4: Segmenting the corpus callosum using the graph cut technique from [96] (side
view). The Euclidean mapping (b) does not take into account the structure of the underlying
tensor manifold. The Riemannian mapping (c) takes this structure into account when
computing statistics and so produces a correct segmentation. (From [96])

Figure 1.5: Full-brain streamline tractography clustered using affinity propagation [99].
Viewed from the outside (left) and inside cutting away the left hemisphere (right). Among
the visible structures, we see the cingulum bundle (yellow), internal capsule (red), and
arcuate (purple).

(a) Original fibers (b) Major pathways

Figure 1.6: Fronto-occipital fibers from the right hemisphere using streamline tractography
and clustered into bundles (a) [99]. Viewing the most representative fiber in each bundle
(b) we see a fiber from one cluster (red) that appears to have wandered off the pathway.
(From [99])
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Figure 1.7: The brain viewed as a network of weighted connections. Each edge represents
a possible connection and is weighted by the strength of that path. Many techniques from
network analysis are applied to reveal hubs and subnetworks within this macroscopic view.

Figure 1.8: Plotting FA as a function of arc-length to examine local fluctuations. Fibers are
selected that connect the left and right seed regions (green). Notice how the FA from single-
tensor (blue) is lower in regions of crossing compared to two-tensor FA (red). (From [97])
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CHAPTER II

FILTERED TRACTOGRAPHY

2.1 Summary

Nearly all approaches to tractography fit the model at each voxel independent of other

voxels; however, tractography is a causal process: we arrive at each new position along the

fiber based upon the diffusion found at the previous position.

We propose to we treat model estimation and tractography as such by placing this

process within a causal filter. As we examine the signal at each new position, the filter

recursively updates the underlying local model parameters, provides the variance of that

estimate, and indicates the direction in which to propagate tractography. Figure 2.9 pro-

vides an overview of this recursive process.

To begin estimating within a finite dimensional filter, we model the diffusion signal

using a mixture of parametric directional functions. We choose parametric models since

they provide a compact representation of the signal parameterized by the principal diffu-

sion direction and scaling parameters influencing anisotropy, and further allows analytic

reconstruction of the oriented diffusion function from those parameters [103, 127]. This

enables estimation directly from the raw signal without separate preprocessing or regular-

ization. Because the signal reconstruction is nonlinear, we use the unscented Kalman filter

to estimate the model parameters and then propagate in the most consistent direction.

Using causal estimation in this way yields inherent path regularization and accurate fiber

resolution at crossing angles not found with independent optimization. In a loop, the filter

estimates the model at the current position, moves a step in the most consistent direction,

and then begins estimation again. Since each iteration begins with a near-optimal solution

provided by the previous estimation, the convergence of model fitting is improved and many

local minima are naturally avoided. This approach generalizes to arbitrary fiber model with

finite dimensional parameter space. The bulk of this dissertation is found among [101–103].
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predicted signalsigma points

neural fibers

estimated model

measured signal

Unscented Kalman Filter

x̄t+1|tx̂t

xt
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ȳt+1|t

x̂t+1

Figure 2.9: System overview illustrating relation between the neural fibers, the measured
scanner signal, and the unscented Kalman filter as it is used to estimate the local model.
At each step, the filter uses its current model state (x̂t) to predict the observed scanner
signal (ȳt+1|t) and then compares that against the actual measured signal (yt) in order to
update its internal model state (x̂t+1).

Several studies have specific relevance to this present work because of their use of a

filtering strategy in either orientation estimation or tractography. In extending standard

streamline tractography to enhance path regularization, [59] move curve integration into

a linear Kalman filter while [157] incorporate a moving least squares estimator. Alterna-

tively, one could use a particle filter to place a prior on the direction of propagation [156].

Since these methods model only the position of the fiber, not the local fiber model, they

are inherently focused on path regularization rather than estimating the underlying fiber

structure. Finally, [123] proposed using a linear Kalman filter for online, direct estimation

of either single-tensor or harmonic coefficients while successive diffusion image slices are ac-

quired, while [39] revisited the technique to account for proper regularization and proposed

a method to quickly determine optimal gradient set orderings.

Section 2.2 provides the necessary background on modeling the measurement signal

using directional functions and defines the specific fiber models employed in this study.

Then, Section 2.3 describes how this model may be estimated using an unscented Kalman

filter.

2.2 Modeling local fiber orientations

In diffusion weighted imaging, image contrast is related to the strength of water diffusion,

and our goal is to accurately relate these signals to an underlying model of fiber orientation.
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(a) Single-tensor streamline (b) Two-component model

Figure 2.10: Comparison of tractography using a single-tensor model and the proposed
two-component model with filtering. While the single-tensor model misses many of the
lateral branches from the corpus callosum, the filter provides a stable estimate of the two-
component model capable of revealing the lateral transcallosal pathways. Seed region indi-
cated with yellow.

At each image voxel, diffusion is measured along a set of distinct gradients, u1, ...,un ∈ S
2

(on the unit sphere), producing the corresponding signal, s = [ s1, ..., sn ]T ∈ R
n. For voxels

containing a mixed diffusion pattern, a general weighted formulation may be written as,

si = s0

∑

j

wje
−buT

i Djui , (2.2)

where s0 is a baseline signal intensity, b is an acquisition-specific constant, wj are convex

weights, and Dj is a tensor matrix describing a diffusion pattern.

We now provide definition to the two primary models employed in this work: equally

weighted diffusion tensors [101,103] and Watson directional functions [127]. Later in chap-

ter 4, we return to extend the method to weighted mixtures of diffusion tensors which

requires a different filtering scheme [102].

2.2.1 Diffusion tensors

From the general mixture model above (Equation (1.1)), we choose to start with two com-

ponents. This choice is guided by several previous studies which found two-fiber models

to be sufficient at b = 1000 [22, 60, 84, 118, 146, 155]. Also, we assume the shape of each

tensor to be ellipsoidal, i.e. there is one dominant principal diffusion direction m with

eigenvalue λ1 and the remaining orthonormal directions have equal eigenvalues λ2 = λ3 (as

in [53,78,117,118]). Last, as in the study of [155], we fix the weights so that each component
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contributes equally. While assuming equally-weighted compartments may limit flexibility,

we found that the eigenvalues adjust to fit the signal in much the same way a fully weighted

model would adjust. We will revisit this in the experiments and discussion (Section 3.1.4).

These assumptions then leave us with the following model used in this study:

si = s0

2 e−buT
i D1ui + s0

2 e−buT
i D2ui , (2.3)

where D1, D2 are each expressible as, D = λ1mmT + λ2

(

ppT + qqT
)

, with m,p,q ∈ S
2

forming an orthonormal basis aligned to the principal diffusion direction m. The free model

parameters are then m1, λ11, λ21, m2, λ12, and λ22. In our current implementation, we

restrict each λ to be positive. Extending off the two-tensor model, we can directly formulate

a three-tensor version:

si =
s0

3

3
∑

j=1

e−buT
i Djui , (2.4)

with the additional parameters m3, λ13, and λ23.

2.2.2 Watson directional function

Considering a single tensor, we now follow the formulation of Rathi et al. [127] to define the

Watson directional function which approximates the apparent diffusion pattern. We begin

by noting that any diffusion tensor D can be decomposed as D = UΛUT , where U is a

rotation matrix and Λ is a diagonal matrix with eigenvalues {λ1, λ2, λ3}. These eigenvalues

determine the shape of the tensor: ellipsoidal, planar, and spherical. For example, if λ1 >

λ2 > λ3, then the shape is ellipsoidal with the major axis of the ellipsoid pointing to

the eigenvector corresponding to λ1. Intuitively, it represents strong diffusion along that

particular direction. When λ1 = λ2 > λ3, the shape is planar indicating diffusion along

orthogonal directions, and finally, when λ1 = λ2 = λ3, the diffusion is spherical (isotropic).

The most common of these configurations is ellipsoidal with principal diffusion direction

m and eigenvalue λ1, and hence the first step in introducing directional functions is to

approximate the tensor by its first eigenvector expansion: D ≈ λ1mmT . Using this, each
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(a) Reconstructed signals for strong diffusivity (k = 2), weak
diffusivity (k = 0.5), and isotropic diffusion patterns (k =
0.01).

(b) Signals for two-fiber and three-fiber
mixtures.

Figure 2.11: Watson directional functions are capable of representing various diffusion pat-
terns and fiber orientations.

exponent in Equation (1.1) may then be rewritten,

− buT
i Dui ≈ −bλ1u

T
i

(

mmT
)

ui (2.5)

= −bλ1

(

uT
i m

)2
(2.6)

= −k
(

uT
i m

)2
, (2.7)

where the scalar k concentration parameter determines the degree of anisotropy. Finally,

the general model may be restated:

si = A
∑

j

wje
−kj(u

T
i mj)

2

, (2.8)

where A is a normalization constant such that ‖s‖ = 1. For purposes of comparison, this

normalization will also be done to signals obtained from scanner. Note that, while the diffu-

sion tensor requires six parameters, these Watson functions require four parameters: three

for the orientation vector m and one concentration parameter k. Employing a spherical

representation can further reduce the unit vector m to two spherical coordinates. Fig-

ure 2.11a demonstrates how adjusting the k-value produces different diffusion patterns, and

Figure 2.11b illustrates two multi-fiber configurations.

From this general mixture model, we choose to start with a restricted form involving

two equally-weighted Watson functions. This choice is guided by several previous studies.

Behrens et al. [22] showed that at a b-value of 1000 ms/mm2 the maximum number of

detectable fibers is two. Several other studies have also found two-fiber models to be

sufficient [84, 118, 146, 155]. Using this as a practical guideline, we started with a mixture

of two Watson functions as our local fiber model. Further, following the study of [155],
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we assume an equal combination (50%-50%) of the two Watson functions. While the effect

of this second choice appears to have little to no effect on experiments, we have yet to

quantify any potential loss in accuracy. These assumptions leave us with the following

two-fiber model used in this study:

si =
A

2

(

e−k1(uT
i m1)2 + e−k2(uT

i m2)2
)

. (2.9)

where k1 and m1 parameterize the first Watson function, k2 and m2 parameterize the

second, and A is again a normalization constant such that ‖s‖ = 1. Thus, the equally-

weighted two-fiber model is fully described by the following parameters: k1, m1, k2, m2.

Extending off the two-Watson model, we can directly formulate the equally-weighted three-

Watson model:

si =
A

3

3
∑

j=1

e−kj(u
T
i mj)

2

, (2.10)

with the additional parameters k3 and m3.

Finally, from such parameters, Rathi et al. [127] describe how one may compute the

ODF analytically by applying the Funk-Radon transform directly to Equation (2.8). The

ODF can be reconstructed directly from the same parameters describing the signal without

a separate estimation process. For the two-Watson model (Equation (2.9)) the ODF is

approximated by,

fi =
B

2

(

e−
k1

2 (1−(uT
i m1)2) + e−

k2

2 (1−(uT
i m2)2)

)

, (2.11)

where B is a normalization factor such that
∑

i fi = 1.

2.3 Estimating the fiber model

Given the measured scanner signal at a particular voxel, we want to estimate the underlying

model parameters that explain this signal. As in streamline tractography, we treat the fiber

as the trajectory of a particle which we trace out. At each step, we examine the measured

signal at that position, estimate the underlying model parameters, and propagate forward

in the most consistent direction. Figure 2.9 illustrates this filtering process.

To use a state-space filter for estimating the model parameters, we need the application-

specific definition of four filter components:
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1. The system state x: the model parameters

2. The state transition f [·]: how the model changes as we trace the fiber

3. The observation h[·]: how the signal appears given a particular state

4. The measurement y: the actual signal obtained from the scanner

For our state, we directly use the model parameters, thus the two-fiber model in Equa-

tion (2.9) has the following state vector:

x = [m1 k1 m2 k2 ]T , m ∈ S
2, k ∈ R. (2.12)

While each m could be represented in a reduced spherical form, the antipodes of the spher-

ical parameterization would then introduce nonlinearities which complicate estimation. For

the state transition we assume identity dynamics; the local fiber configuration does not

undergo drastic change from one position to the next. Our observation is the signal re-

construction, y = s = [ s1, ..., sn ]T using si from Equation (2.9), and our measurement is

the actual signal interpolated directly from the diffusion weighted images at the current

position.

Since the signal reconstruction is a nonlinear process, we employ an unscented Kalman

filter to perform nonlinear estimation. Similar to classical linear Kalman filtering, the

unscented version seeks to reconcile the predicted state of the system with the measured

state and addresses the fact that those two processes (prediction and measurement) may be

nonlinear or unknown. It does this in two phases: first it uses the system transition model

to predict the next state and observation, and then it uses the new measurement to correct

that state estimate. In what follows, we present the algorithmic application of the filter.

For more thorough treatments, see [77, 147].

It is important to note two alternative techniques for nonlinear estimation. First, particle

filters are commonly used to provide a multi-modal estimate of unknown systems. With

respect to an n-dimensional state space, particle filters require the number of particles to

be exponential to properly explore the state space. In contrast, the unscented filter requires

only 2n + 1 particles (sigma points) for a Gaussian estimate that space. Further, for many

slowly varying systems, the multi-modal estimate is unnecessary: from one voxel to the
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next, fibers tend not to change direction drastically. Second, an extended Kalman filter

may also be used to provide a Gaussian estimate after linearizing the system; however, the

unscented Kalman filter provides a more accurate estimate with equivalent computational

cost and altogether avoids the attempt at linearization [77,90,147].

Suppose the system of interest is at time t and we have a Gaussian estimate of its

current state with mean, xt ∈ R
n, and covariance, Pt ∈ R

n×n. Prediction begins with the

formation of a set Xt = {xi} ⊂ R
n of 2n + 1 sigma point states with associated convex

weights, wi ∈ R, each a perturbed version of the current state. We use the covariance, Pt,

to distribute this set:

x0 = xt w0 = κ/(n + κ) wi = wi+n = 1
2(n+κ)

xi = xt +
[

√

(n + κ)Pt

]

i
xi+n = xt −

[

√

(n + κ)Pt

]

i
(2.13)

where [A]i denotes the ith column of matrix A and κ is an adjustable scaling parameter

(κ = 0.01 in all experiments). Next, this set is propagated through the state transition

function, x̂ = f [x] ∈ R
n, to obtain a new predicted sigma point set: Xt+1|t = {f [xi]} = {x̂i}.

Since in this study we assume the fiber configuration does not change drastically as we follow

it from one voxel to the next, we may write this identity transition as, xt+1|t = f [xt] = xt.

These are then used to calculate the predicted system mean state and covariance,

x̄t+1|t =
∑

i

wi x̂i,

Pxx =
∑

i

wi

(

x̂i − x̄t+1|t

) (

x̂i − x̄t+1|t

)T
+ Q, (2.14)

where Q is the injected process noise bias used to ensure a non-null spread of sigma points

and a positive-definite covariance. This procedure comprises the unscented transform used

to estimate the behavior of a nonlinear function: spread sigma points based on your current

uncertainty, propagate those using your transform function, and measure their spread.

To obtain the predicted observation, we again apply the unscented transform this time

using the predicted states, Xt+1|t, to estimate what we expect to observe from the hypo-

thetical measurement of each state: y = h[x̂] ∈ R
m. Keep in mind that, for this study, our

observation is the signal reconstruction from Equation (2.9), and the measurement itself is
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Algorithm 1 Unscented Kalman Filter

1: Form weighted sigma points Xt = {wi,xi}
2n
i=0 around current mean xt and covariance

Pt with scaling factor ζ

x0 = xt xi = xt + [
√

ζPt]i xi+n = xt − [
√

ζPt]i

2: Predict the new sigma points and observations

Xt+1|t = f [Xt] Yt+1|t = h[Xt+1|t]

3: Compute weighted means and covariances, e.g .

x̄t+1|t =
∑

i

wi xi Pxy =
∑

i

wi(xi − x̄t+1|t)(yi − ȳt+1|t)
T

4: Update estimate using Kalman gain K and scanner measurement yt

K = PxyP
−1
yy xt+1 = x̄t+1|t + K(yt − ȳt+1|t) Pt+1 = Pxx − KPyyK

T

the diffusion-weighted signal, s, interpolated at the current position. From these, we obtain

the predicted set of observations, Yt+1|t = {h[x̂i]} = {yi}, and may calculate its weighted

mean and covariance,

ȳt+1|t =
∑

i

wi ŷi,

Pyy =
∑

i

wi

(

ŷi − ȳt+1|t

) (

ŷi − ȳt+1|t

)T
+ R, (2.15)

where R is the injected measurement noise bias again used to ensure a positive-definite

covariance. The cross correlation between the estimated state and measurement may also

be calculated:

Pxy =
∑

i

wi

(

x̂i − x̄t+1|t

) (

ŷi − ȳt+1|t

)T
. (2.16)

As is done in the classic linear Kalman filter, the final step is to use the Kalman gain,

K = PxyP
−1
yy , to correct our prediction and provide us with the final estimated system mean

and covariance,

xt+1 = x̄t+1|t + K(yt − ȳt+1|t) (2.17)

Pt+1 = Pxx − KPyyK
T , (2.18)

where yt ∈ R
m is the actual signal measurement taken at this time. Algorithm 1 summarizes

this algorithm for unscented Kalman filtering.

2.4 The algorithm

To summarize the proposed technique, we are using the unscented Kalman filter to estimate

the local model parameters as we trace out each fiber. For each fiber, we maintain the
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Algorithm 2 Main loop repeated for each fiber

1: repeat

2: Form the sigma points Xt around xt

3: Predict the new sigma points Xt+1|t and observations Yt+1|t

4: Compute weighted means and covariances, e.g . x̄t+1|t, Pxy

5: Update estimate (xt+1, Pt+1) using scanner measurement (yt)
6: Proceed in most consistent direction mj

7: until estimated model appears isotropic

position at which we are currently tracing it and the current estimate of its model parameters

(mean and covariance). At each iteration of the algorithm, we predict the new state, which

in this case is simply identity (xt+1|t = xt) as we assume the fiber does not change drastically

in character from one position to the next. Our actual measurement yt in Equation (2.17)

is the diffusion-weighted signal, s, recorded by the scanner at this position. At subvoxel

positions we interpolate directly on the diffusion-weighted images. With these, we step

through the equations above to find the new estimated model parameters, xt+1. Last,

we use path integration to move a small step in the most consistent of principal diffusion

directions, and then we repeat these steps from that new location. Algorithm 2 outlines the

feedback loop between filtering and tractography.
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CHAPTER III

RESULTS

The supporting results of this dissertation are divided into three sections. First, we focus on

the equally-weighted diffusion tensor model treating both two and three component models.

Second, we switch to the Watson directional function as a model and repeat several of these

experiments. Last, we extend this technique to weighted mixtures and employ a constrained

filter. Also, a Python implementation of filtered tractography is made available in Slicer

3.6.

3.1 Tensors

We begin with synthetic experiments to validate our technique against ground truth. After

constructing a set of crossing fiber fields, we perform tractography and examine the un-

derlying orientations and branchings (Section 3.1.1). We then turn to more quantitative

experiments over a broad range of angles and component weightings, and we confirm that

our approach accurately recognizes crossing fibers (Section 3.1.2) and provides a superior

estimate of the diffusion process (Section 3.1.3). We then demonstrate estimation of three-

fiber crossings (Section 3.1.5). Lastly, we examine a real dataset to demonstrate how causal

estimation is able to pick up fibers and branchings known to exist in vivo yet absent us-

ing an assortment of other techniques (Section 3.1.6). This section follows our work found

in [103].

Following the experimental method of generating synthetic data found in [43,135,141],

we pulled from our real data set the 300 voxels with highest fractional anisotropy (FA) and

compute the average eigenvalues among these voxels: {1200, 100, 100}µm2/msec (FA=0.91).

We generated synthetic MR signals according to Equation (1.1) using these eigenvalues to

form an anisotropic tensor at b=1000 s/mm2 using 81 gradient directions uniformly spread

on the hemisphere. We assume s0 = 1 and introduce Rician noise (SNR ≈ 5 dB). For extra

experiments at b=3000 and alternative noise levels, one can refer to an earlier conference

29



(a) Fiber passing through 60◦ synthetic
crossing.

(b) Estimated ODFs along fiber.

Figure 3.12: One fiber passing through an example synthetic field and the estimated ODFs
within crossing region (blue box) using (unsharpened) spherical harmonics (SH) and the
filter. The filter provides consistent angular resolution while SH modeling at those same
locations sometimes misses or is off. Above and below the crossing region, the filter aligns
both tensor components to fit the single-tensor signal.

version of this work [101].

In these experiments, we compare against several techniques selected to represent stan-

dard alternative models and fitting procedures. First, we include direct (least-squares)

single-tensor estimation and streamline tractography [16]. Despite its limited utility in

crossing and branching regions, this technique is widely used in both the clinical and neu-

roscience communities and provides a baseline for comparison. Second, we use the same

two-tensor model from Section 2.2 but estimate the model parameters using a Levenberg-

Marquardt nonlinear least-squares solver. This shows the effect of filtered estimation versus

a standard alternative scheme. Such techniques depend largely on the initialization, and so

we employ several variants to remove any uncertainty in initialization. For the synthetic

experiments, we initialize with the ground truth. For the in vivo experiments, we initialize
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with the single-tensor estimate [118] which we loosely refer to as “independent” and we ini-

tialize with the estimate at the previous position which we refer to as “causal”. Third, we

use spherical harmonics for modeling and fiber-ODF sharpening for peak detection (order

l = 8, regularization L = 0.006) [43,141]. This provides a comparison with an independently

estimated, model-free representation. Note that this technique is very similar to spherical

deconvolution. We will often refer to this method as “sharpened spherical harmonics”.

The unscented Kalman filter conveniently requires few parameters. Specifically, of im-

portance are the matrices for injecting model noise Q and injecting measurement noise R

(see Equation (2.14) and Equation (2.15)). Fortunately, the relative magnitude of each can

be determined off-line from the data itself, and typically these are formulated as diagonal

matrices (zeros off the diagonal). The injected model noise governs how much variance

is allowed in the model: higher values allow more variation but, pushed too far, could

lead to inaccurate estimation. We found roughly qm ∈ [0.0015, 0.0030] (roughly 2-4◦) and

qλ ∈ [25, 100] to allow an appropriate amount of angular and diffusive flexibility among

our synthetic and in vivo experiments as well as among various other patients and across

other scanner protocols we have encountered. The injected measurement noise governs how

much variance is expected in the measurement: higher values mean we expect more variance

and hence trust our measurement less. This value depends on the level of physical noise

present which varies depending on the scanner, protocol, or pre-processing, and so some

experimentation may be necessary. However, in all our experiments thus far, we have found

rs ∈ [0.01, 0.03] to quite robust.

3.1.1 Synthetic tractography

While the independent optimization techniques can be run on individually generated voxels,

care must be taken in constructing reasonable scenarios to test the causal filter. For this

purpose, we constructed an actual 2D field through which to navigate. In the middle is one

long fiber pathway where the filter begins estimating a single tensor but then runs into a

field of voxels with two crossed fibers at a fixed angle. We generated several similar fields,

each at a different fixed angle and component weighting. In Figure 3.12a we show one such
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field with a 60◦ crossing. In our experiments, fibers start from the bottom and propagate

upward where they encounter the crossing region. We found that in regions with only

one true fiber present (those outside the crossing here), the second component consistently

aligned with the first.

In Figure 3.12b we take a closer look at several points along this single fiber as it passes

through the crossing region. We examine the reconstructed ODFs produced by the filter as

well as those produced by spherical harmonic modeling at those same positions. As reported

in [43, 135], spherical harmonics at b = 1000 begin to not detect the second component at

around 50◦-60◦, but instead report a single angle as seen in one of the middle samples in

Figure 3.12b. As reported in [135,139,155], a close examination of the reported axes shows

this bias toward a single averaged axis. In contrast, the filtered results are consistent and

accurate. One can note a slight deflection upon entry of the crossing region as the filter

attempts to maintain smooth estimates. The deflection is lessened upon exit since the single

component allows for the most stable model fit.

3.1.2 Angular resolution

Having verified the underlying behavior, we then began a more comprehensive evaluation

and quantified the estimated angle within the crossing regions. Synthetic crossing fields were

constructed with a range of crossing angles and weighting combinations. In Figure 3.13a

each row is a different weighting: top 50-50, middle 60-40, bottom 70-30. Each graph then

plots the angular error as a function of crossing angle, from 15◦ to 90◦. Within the crossing

regions, we compared the performance among direct single-tensor estimation, sharpened

spherical harmonics, a nonlinear solver (Levenberg-Marquardt), and the proposed filter.

By varying the size of the crossing regions in Figure 3.12a or the number of fibers run,

we ensured that each technique performed estimation on at least 500 voxels to produce

consistent trendlines across this wide range of angles.

Figure 3.13a shows the estimated separating angle reported using spherical harmonics

(red), the nonlinear solver (blue), and the proposed filter (black). Over each technique’s

series of estimations, the trendlines indicate the mean error while the bars indicate one
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standard deviation. Consistent with the synthetic results reported in [41, 43], spherical

harmonics are generally unable to detect and resolve angles below 50◦ for b=1000 or below

40◦ for b=3000. With a perfect initialization, the Levenberg-Marquardt solver is closer to

the solution but shows significant variance from the noise. In contrast, the filtered approach

statistically estimates the true underlying signal and so is capable of resolving angles down

to the range of 20-30◦ with 5◦ error in the equally weighted field (50-50) (top row) with

performance degrading little in the 60-40 field (middle). In the 70-30 field (bottom), the

trendlines begin to show an asymptotic limit to performance, yet the filter is the only method

capable of reasonable estimates at large angles. See [101] for additional experiments at both

b=1000 and b=3000. From these trendlines, one can conclude that the filtered approach

provides accurate and consistent angular resolution at crossing angles far below independent

estimation.

3.1.3 Estimated quantities

While angular resolution is important in accurately resolving paths, the underlying es-

timated quantities are important in the analysis of these pathways. We focus on three

scenarios: a single fiber (no crossing), a 45◦ crossing, and an orthogonal 90◦ crossing. In

each scenario we hold constant the primary eigenvalue and adjust the minor eigenvalues to

produce fields with a range of diffusion properties. Further, we adjust the crossing weights

as in the earlier experiments. We compare among the three techniques estimating diffusion

quantities: direct single-tensor estimation (green), the two-tensor model with the nonlin-

ear solver (Levenberg-Marquardt initialized with ground truth) (blue), and the two-tensor

model with the proposed filter (black). And finally we judge these techniques using the

error in estimated fractional anisotropy (FA), one of the most common proxy measures for

diffusion.

The fields with a single fiber (no crossing) serve as another baseline. Figure 3.13b

shows that both direct estimation and the filter provide tight estimates of the true FA.

Note the increased variance incurred in the nonlinear solver due to noise. In Figure 3.13c,

single-tensor estimation begins to show a bias. Levenberg-Marquardt begins to deteriorate
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slightly, but the filter continues to provide accurate and consistent estimates. Lastly, in

Figure 3.13d, single-tensor estimation provides erroneous estimates while only the multi-

component techniques are able to maintain accuracy. Note again how the filter provides

tight estimates.

3.1.4 Volume fractions

In the current implementation, we have chosen a model without weights (Equation (2.3)).

To examine this assumption, we included experiments over weighted fields to see the effect

on estimation. Each row of Figure 3.13 shows a different weighting combination: equal in

the top row to most asymmetric in the bottom row.

Despite the equally-weighted assumption, Figure 3.13a shows that the filter is capable

of correctly resolving angles in the range of 60-40 and only the most orthogonal angles at

70-30. In all of these runs, the filter maintained tracing of the dominant fiber, drifting little

in the most asymmetric cases. At 80-20 no technique was able to reliably detect the minor

component.

While the filter had trouble picking up the minor component in the more asymmet-

ric cases, Figure 3.13b-3.13d shows that it maintained accurate estimates of the diffusion

processes, perhaps the most important consideration. In these regions where the model

does not explicitly fit the data, we found that the filter compensates by adjusting the

eigenvalues. For example, changes in the eigenvalues could be interpreted as weights:

e−buT
i Dui = e−buT

i (Da+Db)ui = e−buT
i Dauie−buT

i Dbui = we−buT
i Dbui . In each of the unequally

weighted crossings, the filter increases the eigenvalues of the primary component and de-

creases those of the minor component in order to fit the signal with much the same effect as

increasing or decreasing weights. Since all techniques appear to deteriorate beyond the 70-

30 weighting, it appears that components of less than 30% contribution will not be reliably

detected despite incorporating weights.

The unscented Kalman filter itself places no constraint on the state space except what

is statistically likely given the current estimate: all values in the state vector are free to

take any value in R. In our current implementation, we restricted m to S
2 and λ1, λ2 > 0.
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However, this is an ad hoc solution and we have experimented with applying causal filters

capable of estimating under model constraints, e.g . positive eigenvalues, convex weights

[102].

3.1.5 Three-fiber crossings

Resolving three-fiber crossings has proven difficult for many techniques, especially at the

lower b-values typically used in clinical scans. For example, [146] found the general multi-

tensor model to be unstable for three or more components using data at b=1077 with 126

gradients. [25] only reported results for up to two-tensors (b=700, 30 gradients). In simu-

lation, [22] found that b-values at upwards of 3000-4000 s/mm2 were required for detecting

more than two fibers and none were found in vivo (b=1000, 60 gradients). Further, many

studies specifically use at most two orientations [2, 84, 118]. However, spherical shell tech-

niques have had some success in resolving three-fiber crossings. [141] reported such crossings

using spherical deconvolution (b = 2971, 60 gradients). Most recently, [135] demonstrated

tensor decomposition as a promising technique for resolving such configurations (b=1000,

60 gradients).

Following the synthetic experimental setup of [135], we constructed an additional set

of synthetic fields this time with three equally-weighted Gaussian components. Similar

to the synthetic fields shown in Figure 3.12a, one fiber is angled up and is the intended

orientation to track through the region, but here the other two orientations were set so

that the endpoints of the three principal axes formed an equilateral triangle with any two

separated by the specified angle. With this setup, Figure 3.14 shows that the filtered

approach provides an accurate estimate that reaches to roughly 45◦ compared to 60-65◦

for spherical harmonics. A significant bias is apparent at more acute angles using either

technique.

3.1.6 In vivo tractography

We next test our approach on a real human brain scan acquired on a 3-Tesla GE system

using an echo planar imaging (EPI) diffusion weighted image sequence. A double echo

option was used to reduce eddy-current related distortions. To reduce impact of EPI spatial
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distortion, an eight channel coil was used to perform parallel imaging using Array Spatial

Sensitivity Encoding Techniques (GE) with a SENSE-factor (speed-up) of 2. Acquisitions

have 51 gradient directions with b = 900 and eight baseline scans with b = 0. The original

GE sequence was modified to increase spatial resolution, and to further minimize image

artifacts. The following scan parameters were used: TR 17000 ms, TE 78 ms, FOV 24 cm,

144x144 encoding steps, 1.7 mm slice thickness. All scans had 85 axial slices parallel to

the AC-PC line covering the whole brain. In addition, b=0 field inhomogeneity maps were

collected and calculated.

We first focus on fibers originating in the corpus callosum. Specifically, we seek to

trace out the lateral transcallosal fibers that run through the corpus callosum out to the

lateral gyri. It is known that single-tensor streamline tractography only traces out the

dominant pathways forming the U-shaped callosal radiation (Figure 2.10, 3.15a, and 3.16a).

Several studies document this phenomena, among them the works of Descoteaux, Schultz,

et al. [43, 135] have side-by-side comparisons. These fibers have been reported in using

diffusion spectrum imaging [64], probabilistic tractography [8, 43, 78], and more recently

with tensor decomposition [135].

We start with two basic experiments: first examining the tracts surrounding a single

coronal slice and second looking at all tracts passing through the corpus callosum. We seed

each algorithm multiple times in voxels at the intersection of the mid-sagital plane and

the corpus callosum. We terminate fibers when the generalized fractional anisotropy of the

estimated signal (std/rms) fell below 0.1. To explore branchings found using the proposed

technique, we consider a component to be branching if it was separated from the primary

component by less than 40◦ with FA ≥ 0.15. Similarly, with sharpened spherical harmonics,

we consider it a branch if we find additional maxima over the same range. Unless otherwise

stated, in all experiments we follow the primary fiber from the seeding and its branches,

i.e. one level of branching. We do not go on to follow the branches on those secondary

fibers. While such heuristics are somewhat arbitrary, we found little qualitative difference

in adjusting these thresholds.

To demonstrate the flexibility of the proposed filtering strategy with respect to model
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choice, we use both the two-tensor fiber model (Equation (2.3)) and the three-tensor fiber

model (Equation (2.4)). While this introduced differences in the quantity of branchings

detected, we found that using either model resulted in generally the same pathways. This

suggests that the filtering itself accounted for most of the differences compared to the

other techniques, more so than the choice of two or three components in the fiber model.

Further, it is important to note that despite the more complicated multi-fiber models, the

filter provides stable and consistent estimates of the appropriate number of compartments.

For example, when tracing using the two-tensor fiber through a one-tensor region, the filter

overlaps both tensors to fit the signal (above and below the crossing region in Figure 3.12a).

For the first experiment, Figure 3.15 shows tracts originating from within a few voxels

intersecting a particular coronal slice. As a reference, we use a coronal slice showing the

intensity of fractional anisotropy (FA) placed a few voxels behind the seeded coronal posi-

tion. Keeping in mind that these fibers are intersecting or are in front of the image plane,

this roughly shows how the fibers navigate the areas of high anisotropy (bright regions).

Comparable to the results in [43, 135], Figure 3.15b shows that sharpened spherical har-

monics only pick up a few fibers intersecting the U-shaped callosal radiata. In contrast, our

proposed method traces out many pathways consistent with the apparent anatomy using

either the two-fiber or three-fiber model. To emphasize transcallosal tracts, we color as

blue those fibers exiting a corridor of ±22 mm around the mid-sagittal plane. To explore

the maximum connectivity found using each approach, this is the one experiment where

we followed secondary branches, i.e. primary fibers, their branches, and finally branches

off those fibers. Figure 3.16 shows a view of the whole brain to see the overall difference

between the different methods.

We next combined the filtered tracings from the corpus callosum with those from the

internal capsule to demonstrate practically how the filter is able to push through areas of

crossing. Figure 3.17 shows successive snapshots as two-tensor filtered tracings from the

corpus callosum (red) infiltrate those originating in the internal capsule (yellow). Since

other methods were unable to reconstruct such dense penetration, it is our hope that this

method of multi-tensor tractography will provide rich information in connectivity studies.
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Figure 3.18 takes a closer look at one area where these fiber pathways merge and shows

fragments from the fibers traversing through this region using the three-tensor model.

In the experiments thus far, the decision to branch is somewhat ad hoc. An alternative

approach to avoid such thresholds is to perform full-brain tractography following only one

path and then select fibers using masks. Along these lines we seeded every voxel with

FA ≥ 0.15 using each technique discussed so far. In addition, we included filtered single-

tensor tractography to contrast to the baseline single-tensor streamline.

We select out three well-studied pathways. Figure 3.19 shows the first pathway, a

portion of the superior longitudinal fasciculus as it crosses the lateral pathways exposed

in earlier figures. Only two techniques were able to produce this portion of the tract:

the causal variant of Levenberg-Marquardt (initializes each step with previous solution)

and filtered two-tensor tractography. Both share the same general shape, but the filtered

version appears to show a superior reconstruction, especially where the endpoints insert.

Spherical harmonics were unable to traverse through the lateral crossings here likely due to

ambiguous peaks along this corridor, and the single-tensor models are inherently incapable

of modeling the crossing.

Figure 3.20 shows the second pathway, the cingulum bundle as it passes through several

gates (yellow). Each technique incurs false-positive fibers at the ends of the corpus–the genu

(anterior) and splenium (posterior)–where partial voluming often leads to fibers straying

onto the corpus callosum. While all techniques have difficulty making the posterior bend,

they begin to differ in their reconstructions of the main body. Going from streamline single-

tensor to filtered single-tensor, we see a fuller reconstruction. Levenberg-Marquardt shows

many false positives as it easily finds incorrect minima. Sharpened spherical harmonics

provide an accurate although sparse reconstruction. Filtered two-tensor provides a full

reconstruction although it produces many false positives.

Last, Figure 3.21 shows tracing of the interior occipital-fronto fasciculus as it spreads and

inserts into the occipital and temporal lobes. Streamline single tractography reconstructs

the central pathway. Only the filtered techniques provide consistently deeper penetration

into the gray matter while retaining coherent paths. Further, only the filtered version of
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the two-tensor model reconstructs the known minor insertions into the temporal lobe. This

is even more pronounced in the views from above in Figure 3.22.

3.2 Watson directional functions

We now treat the evaluation of the Watson directional function separately. Since this model

is an approximation of the tensor diffusion model, we begin with experiments examining

reconstruction error as well as those measuring angular error before moving quickly to in

vivo experiments. This section follows our work in [98].

Throughout these experiments, we draw comparison to three alternative techniques.

First, we use the same two-Watson model from Section 2.2 with a variant of matching

pursuit for brute force, dictionary-based optimization [104]. In our implementation, we

construct a finite dictionary of two-Watson signals at a range of various k-values, essentially

discretizing the search space across orientations and k-values. Given a new measured signal,

the signal from the dictionary with highest inner product provides an estimate of orientation

and concentration. While our signal is produced at 81 gradient directions, we use 341

directions to construct the dictionary, thus any error is due to the method’s sensitivity to

noise and discretization. Note that by using 341 orientation directions there is roughly an

8◦ angular difference between offset orientations, hence we see that the angular error is

often at most 8◦. This approach highlights the effect of using the same model but changing

the optimization technique to one that treats each voxel independently. Second, as in the

tensor experiments above, we use spherical harmonics for modeling [141] and fiber-ODF

sharpening for peak detection as described in [43] (order l = 8, regularization L = 0.006).

This provides a comparison with an independently estimated, model-free representation.

Last, when performing tractography on real data, we again include single-tensor streamline

tractography as a baseline.

For the Watson model, we found that values on the order of qm = 0.001 (roughly 2◦),

qλ = 10, and rs = 0.02 were quite robust for the appropriate diagonal entries of Q and R

(see Equation (2.14) and Equation (2.15)). Off-diagonal entries were left at zero.
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3.2.1 Signal reconstruction and angular resolution

In the first experiment, we look at signal reconstruction error. We calculate the mean

squared error of the reconstructed signal, s, against the ground truth signal, ŝ (pure, no

noise): ‖s − ŝ‖2/‖ŝ‖2. In essence, this is exactly what the filter is trying to minimize: the

error between the reconstructed signal and the measured signal. Figure 3.23 shows the

results of using the proposed filter, matching pursuit, and spherical harmonics. Over each

technique’s series of estimations, the trendlines indicate the mean error while the bars indi-

cate one standard deviation. Spherical harmonics (red) appear to produce a smooth fit to

the given noisy data, while matching pursuit (blue) shows the effect of discretization and

sensitivity to noise. The two raised areas are a result of the dictionary being constructed

with an 8◦ minimum separation between any pair of orientations. This experiment demon-

strates that the proposed filter (black) accurately and reliably estimates the true underlying

signal.

In the second experiment, we looked at the error in angular resolution by comparing the

filtered approach to matching pursuit and sharpened spherical harmonics. Figure 3.24a and

Figure 3.24b show the sensitivity of matching pursuit. Consistent with the results reported

in [41,43], spherical harmonics are generally unable to detect and resolve angles below 50◦ for

b=1000 or below 40◦ for b=3000. Figure 3.24c and Figure 3.24d confirm this, respectively.

This experiment demonstrates that for b=1000, the filtered approach consistently resolves

angles down to 20-30◦ with 5◦ error compared to independent optimization which fails to

reliably resolve below 60◦ with as much as 15◦ error. For b = 3000, the filtered approach

consistently resolves down to 20-30◦ with 2-3◦ error compared to independent optimization

which cannot resolve below 50◦ with 5◦ error.

3.2.2 In vivo tractography

As in Section 3.2.2, we first focused on fibers originating in the corpus callosum. We

proceed with two basic experiments: first examining the tracts surrounding a single coronal

slice and second looking at all tracts passing through the corpus callosum. We seed each

algorithm multiple times in voxels at the intersection of the mid-sagital plane and the
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corpus callosum. To explore branchings found using the proposed technique, we considered

a component to be branching if it was separated from the primary component by less than

40◦ with k ≥ 0.6. Similarly, with sharpened spherical harmonics, we considered it a branch

if we found additional maxima over the same range. We terminated fibers when the general

fractional anisotropy of the estimated signal (std/rms) fell below 0.1. While such heuristics

are somewhat arbitrary, we found little qualitative difference in adjusting these values.

To demonstrate the flexibility of the proposed filtering strategy with respect to model

choice, we use both the two-Watson fiber model (Equation (2.9)) and the three-Watson fiber

model (Equation (2.10)). While this introduced differences in the quantity of branchings

detected, we found that using either model resulted in generally finding the same pathways.

For the first experiment, Figure 3.25 shows tracts originating from within a few voxels

intersecting a particular coronal slice. For a reference backdrop, we use a coronal slice

showing the intensity of fractional anisotropy (FA) placed a few voxels behind the seeded

coronal position. Keeping in mind that these fibers are intersecting or are in front of the

image plane, this roughly shows how the fibers navigate the areas of high anisotropy (bright

regions). Our proposed method traces out many pathways consistent with the apparent

anatomy using either the two-fiber or three-fiber model. To emphasize transcallosal tracts,

we color as blue those fibers exiting a corridor of ±22 mm around the mid-sagittal plane.

Figure 3.26 provides a closer inspection of Figure 3.25c and Figure 3.25d where, to emphasize

the underlying anatomy influencing the fibers, we use as a backdrop the actual coronal slice

passing through the voxels used to seed this run. Such results are obtained in minutes in

either our MATLAB or Python implementations. At each step, the cost of reconstructing

the signal for few sigma points approaches the cost of a few iterations of weighted least-

squares estimation of a single tensor.

For the second experiment, Figure 3.31 shows a view of the whole brain to see the overall

difference between the different methods. Here again we emphasize with blue the transcal-

losal fibers found using the proposed filter. Comparing Figure 3.31c and Figure 3.31d we

see several regions that appear to have different fiber density using the two models. This

suggests that incorporating model selection into filtered approaches may have a significant
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effect. To show the various pathways infiltrating the gyri, Figure 3.27 provides a closeup of

the frontal lobe from above (without blue emphasis).

Next we examined fibers passing through the internal capsule to trace out the pathways

reaching up into the primary motor cortex at the top of the brain as well as down into the

hippocampal regions near the brain stem. Figure 3.28 shows frontal views for each technique

with seeding near the cerebral peduncles (blue). Figure 3.30 shows this same result from a

side view where we can see that the filtered approach picks up the corticospinal pathways.

Notice that the two-Watson model picks up the temporopontine and parietopontine tracts

and the three-Watson model further reveals the occipitopontine pathways, another indica-

tion that the chosen fiber model often affects the results. As reported elsewhere [22, 125],

single-tensor tractography follows the dominant corticospinal tract to the primary motor

cortex. The same pathways were also found with spherical harmonics. Figure 3.29 shows a

view from above where we use a transverse FA image slice near the top of the brain as a

backdrop so we can focus on the fiber endpoints. From this we can see how each method in-

filtrates the sulci grooves, and specifically we see that the filtered method is able to infiltrate

sulci more lateral compared to single-tensor tractography.

Note that in the region of intersection between the transcallosal fibers, the corticospinal,

and the superior longitudinal fasciculus, the partial voluming of each of these pathways leads

the filter to report several end-to-end connections that are not necessarily present, e.g. fibers

originating in the left internal capsule do not pass through this region, through the corpus

callosum and then insert into the right motor cortex. Many of the lateral extensions are

callosal fibers that are picked up while passing through this juncture. It is our hope that

such connections may be avoided with the introduction of weighted mixtures, alternative

filter formulations, or different heuristic choices in the algorithm.
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(a) Angular error

(b) FA error, no crossing (c) FA error, 45◦ crossing (d) FA error, 90◦ crossing

Figure 3.13: The error in estimated crossing angle (a) and estimated fractional anisotropy
(b)-(d) at various volume fractions: 50%-50% (top row), 60%-40% (middle row), 70%-30%
(bottom row). Where appropriate, we compare among single-tensor least-squares (green),
sharpened spherical harmonics (red), two-tensor Levenberg-Marquardt (blue), and the pro-
posed filtered two-tensor (black). Through all examples, the filtered technique provides the
most consistent and accurate results.
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(a) Low-noise (SNR ≈ 10 dB) (b) High-noise (SNR ≈ 5 dB)

Figure 3.14: The filtered approach (black) is able to resolve three-fiber crossings with im-
proved accuracy and at sharper angles compared to using sharpened spherical harmonics
(red). Both low-noise and high-noise experiments are shown.
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(a) Single-tensor streamline (b) Spherical harmonics

(c) Independent Levenberg-Marquardt two-tensor (d) Causal Levenberg-Marquardt two-tensor

(e) Filtered two-tensor (f) Filtered three-tensor

Figure 3.15: Tractography using various methods, seeded at the center of the corpus callo-
sum. Single-tensor reconstructs only the dominate callosal radiata (a). Spherical harmonics
pick up some of the lateral branches (b). Initializing a Levenberg-Marquardt solver with
an independent single tensor estimate finds only the radiata (c), while initializing instead
with its previous estimate (d) finds little more than spherical harmonics. Only filtered
tractography picks up the lateral paths consistent with the underlying anatomy. Fibers
exiting ±22 mm around the mid-sagittal plane are indicated in blue. Seed region indicated
in yellow.
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(a) Streamline single-tensor (b) Streamline spherical harmonics (c) Filtered two-tensor

Figure 3.16: Tracing fibers originating from the center of the entire corpus callosum with
views from above (top rows) and front-to-back (bottom rows). The proposed filtered trac-
tography is able to find many of the lateral projections (blue) while single-tensor is unable
to find any and few are found with sharpened spherical harmonics. Seed region indicated
in yellow.

Figure 3.17: Successive snapshots of filtered two-tensor tracing from both the corpus cal-
losum (red) and internal capsule (yellow), viewed from right hemisphere. Here we see the
lateral pathways from the corpus cross the motor tracts from the internal capsule.
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Figure 3.18: The three-tensor filtered approach is able to trace through this intersection
of the corticospinal tract (blue), corpus callosum (red), and superior longitudinal fasciculus
(green).

(a) Levenberg-Marquardt (causal) two-tensor

(b) Filtered two-tensor

Figure 3.19: A portion of the superior longitudinal fasciculus as it crosses a section of the
lateral pathways emanating from the corpus callosum. These fibers were extracted using
two regions of interest (yellow). While LM reconstructs several of these fibers, filtered
estimation produces a more consistent bundle with deeper, uniform penetration into the
frontal and occipital lobes. No such fibers were found using the comparison methods.
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(a) Streamline single-tensor (b) Levenberg-Marquardt (causal)
two-tensor

(c) Spherical harmonics

(d) Filtered single-tensor (e) Filtered two-tensor

Figure 3.20: Tracing of the right cingulum bundle using various methods. From full-brain
seeding, fibers were selected that passed through any two gates (yellow). While all meth-
ods here produce some false-positives (e.g . partial voluming onto the splenium, genu, or
tapetum), the filtered methods appear to produce the fullest cingulum reconstructions.

(a) Streamline single-tensor (b) Levenberg-Marquardt (causal)
two-tensor

(c) Spherical harmonics

(d) Filtered single-tensor (e) Filtered two-tensor

Figure 3.21: Tracing of the right inferior fronto-occipital fasciculus using various methods.
From full-brain seeding, fibers were selected that passed through any two gates (yellow).
Spherical harmonics and Levenberg-Marquardt show sparse and irregular connectivity. Fil-
tered single- and two-tensor results appear to have deeper and more uniform penetration
into the occipital lobe.
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(a) Streamline single-tensor (b) Levenberg-Marquardt (causal)
two-tensor

(c) Spherical harmonics

(d) Filtered single-tensor (e) Filtered two-tensor

Figure 3.22: A view of the previous figure from above. Note the consistent deeper pene-
tration of the filtered techniques. The two-tensor method infiltrates many minor pathways
into the temporal lobe.

(a) b=1000 (b) b=3000

Figure 3.23: Mean squared error (MSE) between reconstructed signal and ground truth
signal at various crossing angles (low-noise on left, high-noise on right). Notice how the
increased noise has little effect on the filter (black) compared to using matching pursuit
(blue) or sharpened spherical harmonics (red).
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(a) Matching pursuit, b=1000 (b) Matching pursuit, b=3000

(c) Spherical harmonics, b=1000 (d) Spherical harmonics, b=3000

Figure 3.24: Average angle error at various crossing angles comparing all three tech-
niques: matching pursuit (blue), sharpened spherical harmonics (red), and the proposed
filter (black). The filter provides stable and consistent estimation compared to either al-
ternative technique. Each subfigure shows both the low-noise and high-noise experiments
(left, right).

(a) Single-tensor (b) Spherical harmonics

(c) Filtered two-Watson (d) Filtered three-Watson

Figure 3.25: Filtered tractography picks up many fiber paths consistent with the underlying
structures. Both single-tensor streamline and sharpened spherical harmonics are unable to
find the majority of these pathways. Fibers existing ±22 mm around the mid-sagittal plane
are indicated in blue. Seed region indicated in yellow.
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(a) Filtered two-Watson (b) Filtered three-Watson

Figure 3.26: Closeup of upper right in Figure 3.25c and Figure 3.25d.

(a) Filtered two-Watson (b) Filtered three-Watson

Figure 3.27: Closeup of frontal fibers in Figure 3.31c and Figure 3.31d viewed from above.
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(a) Single-tensor (b) Spherical harmonics

(c) Filtered two-Watson (d) Filtered three-Watson

Figure 3.28: Frontal view with seeding in the internal capsule (blue). While both single-
tensor and spherical harmonics tend to follow the dominant corticospinal tract to the pri-
mary motor cortex, the filtered approach follows many more pathways. Seed region indi-
cated in yellow.
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(a) Single-tensor (b) Spherical harmonics

(c) Filtered two-Watson (d) Filtered three-Watson

Figure 3.29: View from above showing cortical insertion points for each method. FA back-
drop is taken near the top of the brain. The filtered approach shows more lateral insertions
compared to single-tensor and spherical harmonic tracts.
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(a) Single-tensor (b) Spherical harmonics

(c) Filtered two-Watson (d) Filtered three-Watson

Figure 3.30: Side view with seeding in the internal capsule (yellow). Filtered tractography
finds many insertions into cortical regions of the parietal and occipital lobes. Seed region
indicated in yellow.
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(a) Single-tensor (b) Spherical harmonics (c) Filtered two-Watson

(d) Filtered three-Watson

Figure 3.31: Tracing fibers originating from the center of the entire corpus callosum with
views from above (top rows) and front-to-back (bottom rows). The proposed filtered trac-
tography is able to find many of the lateral projections (blue) while single-tensor is unable
to find any and few are found with sharpened spherical harmonics. Seed region indicated
in yellow.
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CHAPTER IV

WEIGHTED MIXTURES

4.1 Summary

Until now we have made use of two-component and three-component models, all with fixed

volume fractions in the general mixture equation (Equation (1.1),Equation (2.3)). This

assumption is forced upon us because update equations of the standard Kalman filter are

unable to enforce the convex relationship between mixture coefficients. We began in Sec-

tion 3.1.4 to explore the impact of this assumption in the presence of mixed fiber populations.

A similar problem arises with the eigenvalues needing to be positive; however, for this a

practical solution was to clamp these values at small positive values after each update. Our

initial efforts at using the log domain to ensure positivity showed promise as an indirect

method of influencing the positivity of eigenvalues, but still did not address the convexity

constraint [126].

To treat the problem more directly, we began exploring constrained filtering where the

state estimate is constrained to a subspace of allowable solutions [136]. In our situation,

this ensures that tensor eigenvalues are positive and the mixture weights are non-negative

and convex.

Section 4.1.1 defines the weighted two-fiber model employed in this section, and Sec-

tion 4.1.2 describes how this model fits into the unscented Kalman filter and more impor-

tantly how the constraints are enforced. This chapter follows our work in [99,102].

4.1.1 The weighted model

Following the equally-weighted two-tensor model from earlier (Equation (2.3)), we use it

here in its more general form:

si = s0w1e
−buT

i D1ui + s0w2e
−buT

i D2ui , (4.19)
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Algorithm 3 Constrained Unscented Kalman Filter

1: Form weighted sigma points Xt = {wi,xi}
2n
i=0 around current mean xt and covariance

Pt with scaling factor ζ

x0 = xt xi = xt + [
√

ζPt]i xi+n = xt − [
√

ζPt]i

2: Project onto the constrained subspace (Equation (4.22))
3: Predict the new sigma points and observations

Xt+1|t = f [Xt] Yt+1|t = h[Xt+1|t]

4: Project onto the constrained subspace (Equation (4.22))
5: Compute weighted means and covariances, e.g .

x̄t+1|t =
∑

i

wi xi Pxy =
∑

i

wi(xi − x̄t+1|t)(yi − ȳt+1|t)
T

6: Update estimate using Kalman gain K and scanner measurement yt

7: Project onto the constrained subspace (Equation (4.22))

xt+1 = x̄t+1|t + K(yt − ȳt+1|t) Pt+1 = Pxx − KPyyK
T K = PxyP

−1
yy

where w1, w2 are convex weights and D1, D2 are each expressible as D = λ1mmT +

λ2

(

ppT + qqT
)

, with m,p,q ∈ S
2 forming an orthonormal basis aligned to the princi-

pal diffusion direction m. The free model parameters are then m1, λ11, λ21, w1, m2, λ12,

λ22, and w2. Lastly, we wish to constrain this model to have positive eigenvalues and convex

weights (w1, w2 ≥ 0 and w1 + w2 = 1).

4.1.2 Constrained estimation

As in the standard estimation process, we begin with the application-specific definition of

four filter components. The only difference here is for that we directly include the weighting

parameters for the two-tensor model in Equation (4.19):

x = [m1 λ11 λ21 w1 m2 λ12 λ22 w2 ]T , m ∈ S
2, λ ∈ R

+, w ∈ [0, 1]. (4.20)

For the state transition we again assume identity dynamics, and our observation is the

signal reconstruction, y = h[x] = s = [ s1, ..., sm ]T using si described by the model in

Equation (4.19), and our measurement is the actual signal interpolated directly on the

diffusion weighted images at the current position.

In the standard formulation (Section 2.3), we ignored the constraints on our model. This

results in instabilities: the diffusion tensors may become degenerate with zero or negative

eigenvalues, or the weights may become negative. To enforce appropriate constraints, one

can directly project any unconstrained state x onto the constrained subspace [136]. In
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other words, we wish to find the state x̂ closest to the unconstrained state x which still

obeys the constraints, Ax̂ ≤ b. Using Pt as a weighting matrix, this becomes a quadratic

programming problem:

min
x̂

(x − x̂)T P−1
t (x − x̂) subject to Ax̂ ≤ b. (4.21)

This projection procedure is applied within unscented Kalman filter procedure to correct

at every place where we move in the state-space: after spreading the sigma points Xt, after

transforming the sigma points Xt+1|t, and after the final estimate xt+1. See Algorithm 3.

In this study, for voxels that can be modeled with only one tensor, we found it preferable

to have both the tensor components similarly oriented. Upon encountering a region of

dispersion, the second component is poised and ready to begin branching instead of having

zero weight and arbitrary orientation. To favor such solutions, we require the weights of

each of the components to be not just non-negative but also greater than 0.2, and so, in our

current implementation, A and b are constructed to encode the following state constraints:

λ11, λ21, λ12, λ22 > 0 w1, w2 ≥ 0.2 w1 + w2 = 1. (4.22)

4.2 Experiments

We first use experiments with synthetic data to validate our technique against ground truth.

We confirm that our approach accurately recognizes crossing fibers over a broad range of

angles and consistently estimates the partial volumes (Section 4.2.1). We then examine a

real dataset to demonstrate how causal estimation is able to pick up fibers and branchings

known to exist in vivo yet absent using other techniques (Section 4.2.2).

In these experiments, we compare against two alternative techniques. First, we use

sharpened spherical harmonics with peak detection as described in [42] (order l = 8, reg-

ularization L = 0.006). This provides a comparison with an independently estimated non-

parametric representation. Second, when performing tractography on real data, we also

compare against single-tensor streamline tractography for a baseline.
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(a) 50%-50% (b) 60%-40% (c) 70%-30% (d) 80%-20%

Figure 4.32: Comparison of sharpened spherical harmonics (red) against filtered approach
(black) over several different metrics: detection rate, angular resolution, estimated primary
fiber weight (rows, top to bottom). Each column is a different primary fiber weighting. The
filter provides superior detection rates, accurate angular resolution, and consistent weight
estimation. Trendlines indicate mean while dashed bars indicate one standard deviation.

4.2.1 Synthetic validation

Following the experimental method of generating multi-compartment synthetic data found

in [42, 135, 146], we averaged the eigenvalues of the 300 voxels with highest fractional

anisotropy (FA) in our real data set: {1200, 100, 100}µm2/msec. We used these eigen-

values to generate synthetic MR signals according to Equation (1.1) at b = 1000 with 81

gradient directions on the hemisphere and introduced Rician noise (SNR ≈ 5 dB).

As before, we constructed a set of two-dimensional fields through which to navigate

(Section 3.1.1). In the middle is one long pathway where the filter starts at one end esti-

mating a single tensor but then runs into voxels with two crossed fibers at a fixed angle

and weighting. In this crossing region we calculated error statistics to compare against

sharpened spherical harmonics.

From these synthetic sets, we examined detection rate, angular resolution, and estimated

volume fractions and we plot the results in Figure 4.32. Each column looks at a different
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(a) Single-tensor (b) Spherical harmonics (c) Filtered

Figure 4.33: Filtered tractography picks up many fiber paths consistent with the underlying
structures. Both single-tensor streamline and sharpened spherical harmonics are unable to
find the majority of these pathways. Seed region indicated in yellow.

primary-secondary weighting combination, and each row looks at a different metric. In the

top row, we count how many times each technique distinguishes two separate fibers. The

filtered approach (black) is able to detect two distinct fibers at crossing angles far below that

using spherical harmonics (red). Further, the filtered approach maintains such relatively

high detection rates even at 80/20 partial voluming (far right column). In the middle row,

we look at where each technique reported two fibers and we record the error in estimated

angles. From this, we see that spherical harmonics result in an angular error of roughly

15◦ at best and fails to detect a second component at angles below 60◦. In contrast, the

filtered approach has an error between 5-10◦ and is able to accurately estimate down to

crossing angles of 30◦. In the bottom row, we look at the primary fiber weight estimated

by the filter. As expected, this estimate is most accurate closer to 90◦ (blue line indicates

true weight).

4.2.2 In vivo tractography

Our work focuses on fibers originating in the corpus callosum. Specifically, we sought to

trace out the lateral transcallosal fibers that run through the corpus callosum out to the

lateral gyri. It is known that single-tensor streamline tractography only traces out the

dominant pathways forming the U-shaped callosal radiation while spherical harmonics only

capture some of these pathways [42,135]. These fibers have been reported in using diffusion

spectrum imaging [64], probabilistic tractography [8,42,78], and more recently with tensor

decomposition [135]; however, all of these techniques require lengthy scans at high b-values

along with significantly more processing time than streamline techniques.
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(a) Single-tensor (b) Spherical harmonics (c) Filtered

Figure 4.34: Tracing fibers originating from the center of the entire corpus callosum viewed
from above. The proposed filtered tractography is able to find many of the lateral pro-
jections (blue) while single-tensor is unable to find any and few are found with sharpened
spherical harmonics. Seed region indicated in yellow.

We begin by seeding each algorithm up to thirty times in voxels at the intersection of the

mid-sagital plane and the corpus callosum. To explore branchings found using the proposed

technique, we considered a component to be branching if it was separated from the primary

component by less than 40◦ with FA≥0.15 and weight above 0.3. Similarly, with sharpened

spherical harmonics, we considered it a branch if we found additional maxima over the same

range. We terminated fibers when either the generalized fractional anisotropy [146] of the

estimated signal fell below 0.1 or the primary component FA fell below 0.15 or weight below

0.3.

We tested our approach on a human brain scan using a 3-Tesla magnet to collect 51

diffusion weighted images on the hemisphere at b = 900 s/mm2, a scan sequence compa-

rable those of [42, 135]. Figure 4.33 shows tracts originating from within a few voxels

intersecting a chosen coronal slice. Confirming the results in [42, 135], sharpened spherical

harmonics only pick up a few fibers intersecting the U-shaped callosal radiata. In contrast,

our proposed algorithm traces out many pathways consistent with the apparent anatomy.

Figure 4.34 shows a view of the whole corpus callosum from above. The filtered approach

is able to pick up many transcallosal fibers throughout the corpus callosum as well as infil-

trating the frontal gyri to a greater degree than either alternate technique. To emphasize
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transcallosal tracts, we color as blue those fibers exiting a corridor of ±22 mm around the

mid-sagittal plane.

4.3 Summary

In this section, we demonstrated that the constrained approach gives significantly lower an-

gular error (5-10◦) in regions with fiber crossings than using sharpened spherical harmonics

(15-20◦), and it reliably estimates the partial volume fractions.

While these initial results are promising, there are several aspects to be improved. First,

without a prior, the weights tend toward the middle of their range, each tending to hover

around 0.6 (halfway between 0.2 and 1.0). The effect is that both components show some

presence, even in strongly coherent fields. The solution might be to induce priors over their

distribution, hopefully forcing them to zero without signal evidence of a second component.

Second, solving the quadratic constraint is expensive. A practical alternative might be to

simply project as close to the subspace as possible [136]; although, this allows solutions not

necessarily on the subspace and may again open the possibility for non-convex weights and

negative eigenvalues. In practice, this may still be sufficient.
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CHAPTER V

VALIDATION

5.1 Summary

In attempting to reconstruct neural pathways virtually, it is important to keep in mind the

inherent uncertainty in such reconstructions. The resolution of dMRI scanners is at the level

of 3-10mm3 while physical fiber axons are often an order of magnitude smaller in diameter–a

relationship which leaves much room for error. Some noise or a complex fiber configuration

could simply look like a diffuse signal and cause probabilistic tractography to stop in its

tracks, while a few inaccurate voxel estimations could easily send the deterministic tracing

off course to produce a false-positive connection. Even global methods could produce a

tract that fits the signal quite well but incidentally jumps over an actual boundary in one

or two voxels it thinks are noise. Consequently, a common question is: Are these pathways

really present?

With this in mind, an active area of study is validating such results. Since physical dis-

section often requires weeks of tedious effort, many techniques have been used for validating

these virtual dissections. A common starting point is to employ synthetic and physical phan-

toms with known parameters when evaluating new methods [122]. When possible, imaging

before and after injecting radio-opaque dyes directly into the tissue can provide some of the

best evidence for comparison [37,93]. Another powerful approach is to apply bootstrap sam-

pling or other non-parametric statistical tests to judge the sensitivity and reproducibility

of resulting tractography against algorithm parameters, image acquisition, and even signal

noise [33, 34,54,76,87,153].

To begin validating these filtered approaches, we applied this technique to a phantom

simulating several complex pathway interactions and highlight tracts passing through sev-

eral prescribed seed positions. This section follows our work in [100].
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(a) Ground truth (b) Filtered tractography

Figure 5.35: Baseline image from the synthetic phantom (3mm, b = 1500) overlayed with
ground truth and selected fiber tracts (colored) and seed points (white). The filter is capable
of tracing through regions of crossing, branching, and fanning.

5.2 Results and Discussion

Among the phantoms provided in the 2009 MICCAI Fiber Cup, we present results using

the 3mm version at b=1500 [122]. Instead of initializing tractography from the prescribed

seed points, we begin by seeding in voxels with nonzero baseline intensity and terminating

tractography when the estimate becomes isotropic, essentially “full-brain” tractography.

From these potential pathways, Figure 5.35 shows a representative fiber for each seed point.

We further restricted movement to the image plane.

With the explosion of techniques for mapping connectivity, it is often difficult to as-

sess the relative merits among various approaches, and each application has its particular

goals. For connectivity studies, one may only be interested in the final resolved pathway;

however, questions arise such as whether to branch or whether to represent connectivity

as a discrete path or a voxel-to-voxel connectivity matrix possibly telling more about the

relative certainty of connectivity. For tissue studies, one may be primarily concerned with

the estimated microstructure at each position. Filtered approaches like this provide not

only an estimate of these quantities (mean) but also an additional measure of uncertainty
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(variance).

The approach presented here may be considered a local method: at the current position

we estimate a direction and take a step. With such approaches, one mistake can send

the subsequent trajectory off track. We believe that more global approaches should be

considered, ones that take into account larger portions of the fiber pathway. Further, we

believe that anatomical priors should be incorporated. Such a progression of techniques

may be considered analogous to how level set methods developed from local edge-based

computations, to more global region-based approaches, and further with integration of

shape priors.
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CHAPTER VI

TRACT-BASED STATISTICAL ANALYSIS

6.1 Summary

Diffusion tensor imaging has made it possible to evaluate the organization and coherence

of white matter fiber tracts. Hence, it has been used in many population studies, most

notably, to find abnormalities in schizophrenia. To date, most population studies analyzing

fiber tracts have used a single tensor as the local fiber model. While robust, this model

is known to be a poor fit in regions of crossing or branching pathways. Nevertheless, the

effect of using better alternative models on population studies has not been studied. The

goal of this section is to compare white matter abnormalities as revealed by two-tensor and

single-tensor models. To this end, we compare three different regions of the brain from

two populations: schizophrenics and normal controls. Preliminary results demonstrate

that regions with significant statistical difference indicated using one-tensor model do not

necessarily match those using the two-tensor model and vice-versa. We demonstrate this

effect using various tensor measures. This chapter follows our work in [97].

6.2 Introduction

Diffusion tensor imaging (DTI) has become an established tool for investigating tissue

structure, and many studies have used it to understand the effects of aging or disease.

Using this imaging technique, neuroscientists wish to ask how regions of tissue compare

or how well-defined various connections may be. For example, several DTI studies have

indicated a disturbance in connectivity between different brain regions, rather than abnor-

malities within any specific region as responsible for the cognitive dysfunctions observed in

schizophrenia [85]. For such studies, the quality of the results depends on the accuracy of

the underlying model.

The most common local fiber model used in population studies is a single diffusion tensor

which provides a Gaussian estimate of diffusion orientation and strength. While robust, this
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model can be inadequate in cases of mixed fiber presence or more complex orientations, and

so various alternatives have been introduced including mixture models [2, 65, 118, 146] as

well as nonparametric approaches [42, 70, 73, 141, 146]. Probabilistic techniques have also

been developed in connectivity studies [22, 116].

Despite this wide selection of available models, nearly all population studies thus far have

been based on the single-tensor model, and as such it is important to examine the limits of

this model and potential impact this has. To start, some works have focused on the effects

of noise and acquisition schemes and have found nontrivial effects on estimated fractional

anisotropy (FA) and other quantities [15, 57, 75]. Beyond such factors, it is known that in

regions containing crossing or fanning pathways the single-tensor model itself provides a

poor fit that results in lower FA [6,146]. It is estimated that as much as one third of white

matter may contain such putative fiber populations [22]. It is here that this present study

focuses.

In forming studies, there are several approaches for comparing patient populations. For

example, voxel-based studies examine tissue characteristics in regions of interest [9]. In

contrast, tract-based studies incorporate the results of tractography to use fiber pathways

as the frame of reference [44, 137], and several studies have demonstrated the importance

of taking into account local fluctuations in estimated diffusion [36,50,58,95,110].

To date, many studies have focused on schizophrenia, but the findings vary. For example,

the review by Kubicki et al. [85] cites one voxel-based study where the genu of the corpus

callosum has significant differences and another that finds nothing. A recent tract-based

study showed statistical differences not only in the genu of the corpus callosum but also

in regions known to have fiber crossings and branchings [95]. The question then arises,

as to whether the same effect can be seen by better models able to resolve crossings and

branchings? Is the population difference simply a result of poor modeling? We seek to

answer such questions in this present work.
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6.3 Our contributions

In this chapter, we make a first attempt towards confirming or creating doubts regarding

the results reported using the single-tensor model. Specifically, we compare various ten-

sor metrics as estimated using two-tensor and single-tensor models on a number of fiber

tracts generated using our recently proposed method for deterministic two-tensor tractog-

raphy [101]. Hence we are continuing this work with a focus on how such techniques will

begin affecting clinical studies. It is important to note that this is the first time the same

population study has been performed using two different underlying models.

We begin with synthetic experiments to examine the difference in reported FA using

single- and two-tensor models. We find that the single-tensor model consistently underes-

timates the FA by as much as 30% in crossing regions, a difference considered statistically

significant in many studies. Then, we look at connections between three different cortical

regions of the brain and show that statistical group differences reported using the single-

tensor model do not necessarily show differences using the two-tensor model and vice-versa.

Specifically, the regions known to have branchings and crossings reports significant differ-

ences in the single tensor study, but not in the two-tensor study, and conversely, certain

regions which show subtle abnormalities using the two-tensor method are lost in the single-

tensor model. Thus, model error may have contributed to the statistical differences found

in previous DTI studies.

6.4 Method

In this chapter, we form a tract-based study using the two-tensor tractography method de-

scribed in Section 2.2.1, and we compare this against the results from a single-tensor model

typically used in such studies. Section 2.2 provides the necessary background on model-

ing the measured signal using tensors and defines the specific two-fiber model employed

in this study. Section 6.5 looks at the seed regions and the resulting fibers connecting

each hemisphere and finally how these fibers are compared within a tract-based coordinate

system.

Several scalar measures have been proposed for quantifying various aspects of tensors,
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(a) Seed regions (b) Caudalmiddle frontal

(c) Precentral (d) Superiorfrontal

Figure 6.36: For each patient, we seed in three different cortical regions and select only
those fibers that connect the hemispheres.

and in this study we focus on fractional anisotropy (FA), trace, and the ratio between

eigenvalues (λ2/λ1). Since these measures are defined for the single-tensor model, when

computing their value on the two-tensor model, we record the value from the tensor most

aligned with the local fiber tangent.

6.5 Tractography and fiber comparison

For each patient, we have manually delineated cortical regions from which we choose three

regions covering the frontal and parietal lobe. For one patient, Figure 6.36 shows these seed

regions and the resulting fibers that connect each hemisphere. Specifically, the regions are

the superiorfrontal , precentral , and caudalmiddle frontal .

We followed the deterministic fiber tracking procedure in [101]. We begin by seeding

each algorithm several times in each voxel of the seed regions. To explore branchings found
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(a) Single-tensor.

(b) Two-tensor and FA curves

Figure 6.37: Single-tensor tractography finds no connections. Two-tensor passes through
the region of crossing (red/yellow boundary). FA curves show drop in single-tensor FA (blue)
in this region (indicated by dashed white line).

using the proposed technique, we considered a component to be branching if it was separated

from the primary component by less than 40◦ with FA≥0.15. We terminated fibers when

either the general fractional anisotropy [146] of the estimated signal fell below 0.1 or the

primary component FA fell below 0.15. While such parameters are heuristic in nature and

could be examined in their own right, we found the resulting tractography to be sufficient

for the purposes of this work.

It is known that single-tensor streamline tractography is only able to trace out the

dominant pathways forming the U-shaped callosal radiation, so previous tract-based stud-

ies looking at the corpus callosum have been restricted to only studying portions of the

corpus radiata, typically focusing on the splenum and genu [36, 50, 56, 95]. One of the

main advantages of using the multi-tensor filtering approach in [101] is that it is one of

the few techniques capable of following, not only these dominate pathways, but also the

transcallosal pathways out to the lateral gyri. For example, Figure 6.37a shows that for the
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(a) Single-tensor FA. (b) Two-tensor FA.

Figure 6.38: Two-tensor fibers overlayed with FA intensity using both models (red to yellow
is low to high). Both methods show high FA in the corpus callosum but single-tensor FA
drops as fibers enter the gray matter.

caudalmiddle frontal region, using single-tensor tractography leads to nearly all fibers loop-

ing back into another sulci instead of finding any connection to the opposite hemisphere.

In contrast, Figure 6.37b demonstrates that the filtered two-tensor approach finds several

connecting pathways. Therefore, this is the first attempt at tract-oriented analysis along

such pathways.

Since this study focuses on comparing fiber models, we simply perform direct single-

tensor estimation at the same locations as we have two-tensor estimates, thus providing an

exact correspondence for averaging within each patient. Figure 6.38 shows the precentral

region and colors the same fibers with FA intensity to show the relative FA differences

reported by either model.

After performing tractography, we placed fibers from each patient within a common

coordinate system by registering the seed regions to a template. Each seed region was

registered separately. The mid-sagittal plane was automatically determined and provided a

common reference point for each fiber as it passed through the corpus callosum. From this

reference point, we record arc-length moving outward to the cortical regions. The fibers of

each patient being registered with a template and having an origin, we can plot the various

scalar tensor measures along this arc-length as in other tract-based studies. For example,

Figure 6.37b shows FA as a function of arc-length for the caudalmiddle frontal region using

the single-tensor model (blue) and two-tensor model (red). Since the single- and two-tensor

estimates line up exactly, any correspondence error is confined to the matching within fiber
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(a) Fixed eigenvalues (b) No crossing (c) Crossing at 45◦ (d) Crossing at 90◦

Figure 6.39: Estimated fractional anisotropy (FA) using single-tensor (blue) and two-tensor
(red) models on synthetic data with known FA (dashed black). The two-tensor model
accurately captures the FA across a wide range of angles and eigenvalues.

bundles and among patients–not across models which was our focus here. As in [95, 110],

statistical significance was tested as a function of arc-length.

6.6 Results

We first use experiments with synthetic data to validate our technique against ground

truth. By varying crossing angle or eigenvalues used to construct voxels, we confirm that

our approach accurately estimates the fractional anisotropy while using the single-tensor

model can under-estimate FA by as much as 30-40%. (Section 6.6.1). Then, we examine our

real dataset to demonstrate the different results reported using either model (Section 6.6.2).

6.6.1 Synthetic validation

Following the experimental method of generating synthetic data found in [42,141], we gen-

erated synthetic MR signals according to Equation (2.3) using eigenvalues determined from

out in vivo data. We use 81 gradient directions uniformly spread on the hemisphere and

Rician noise (SNR ≈ 10 dB) based on the unweighted signal. Using these we constructed a

set of two-dimensional fields through which to navigate while estimating FA.

Figure 6.39 shows the resulting FA estimates using direct single-tensor estimation (blue)

and filtered two-tensor estimation (red). As expected, Figure 6.39a demonstrates that

crossing regions can lead to single-tensor FA estimates as much as 0.3 lower than expected.

In Figure 6.39b we look at both techniques accurately estimating the FA of a single tensor

as we adjust the second eigenvalue (λ2 in Equation (2.3)). However, Figure 6.39c and 6.39d

demonstrate a consistent drop in FA under the same range of eigenvalues. This experiment
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(a) Caudalmiddle frontal (b) Precentral (c) Superiorfrontal

Figure 6.40: Average of various tensor metrics as a function of arc-length using single-
tensor (blue) and two-tensor (red) models comparing normal patients (solid lines) with
schizophrenic patients (dotted lines). Rows show FA, trace, eigenvalue ratio. Areas of sta-
tistical significance are indicated along the bottom (black dashes indicate 95% confidence).
While each metric generally indicates the same area of significance (looking down columns),
the areas of significance vary with each model (comparing red and blue)

.

demonstrates that we may expect as much as 0.2 to 0.3 drop in FA in regions of crossing

and branching.

6.6.2 In vivo model comparison

We tested our approach on a human brain scans using a 3-Tesla magnet to collect 51

diffusion weighted images on the hemisphere at a voxel size of 1.66 × 1.66 × 1.7 mm3 and

with b = 900 s/mm2 in addition to eight baseline scans. Included in this study are 17 normal

controls and 22 schizophrenics; however, since not connecting fibers were not found in all

patients for all regions, not all patients were represented in each regional group. Below are

the sizes for each region and group.
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Caudalmiddle frontal Precentral Superiorfrontal

Normals 16 17 8

Schizophrenics 20 22 17

For each region and patient group, Figure 6.40 shows the resulting average curves using

the single-tensor (blue) and two-tensor (red) models. Along the bottom of each plot we

indicate local regions of statistical significance between groups. In Figure 6.40a we see that

the two-tensor model detected a region of significance across all three measures whereas

the single-tensor model found only one small portion of that in the trace. As Figure 6.37b

indicates, this a region known to contain branching and crossing, hence the single-tensor FA

drop. Thus, we suspect that the single-tensor was unable to provide a tight enough fit in this

region to detect the difference found using the two-tensor model. In Figure 6.40b we see that

the single-tensor model found a slight area again in a region of known branching, yet the

two-tensor model found nothing. In Figure 6.40c we see the most reported differences and

further we see those differences reported using both models. We note that these differences

may in part be due to the relative size of each population supporting this region. In

summary, among these three regions, we see areas where each model either confirmed or

denied the findings of the other.

6.7 Conclusion

There are many challenges in building automatic frameworks for detecting population dif-

ferences. By repeating the same tract-based study and changing only the model, we have

demonstrated that the ultimate findings may vary. Specifically, our results indicate that

some areas reported as significant using the single-tensor model may in fact be due to poor

modeling at branchings or crossings.

While our results are preliminary, we believe that exploring both alternative models and

methods of reconstructing pathways will provide more accurate and comprehensive informa-

tion about neural pathways and ultimately enhance non-invasive diagnosis and treatment

of brain disease.

Considering future work, we expect that further model discrepancies may be revealed
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with more accurate fiber and patient correspondences [95,110] or functional representations

[56].
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CHAPTER VII

SUMMARY

Studies involving deterministic tractography rely on the underlying model estimated at

each voxel as well as the reconstructed pathways. Most of the work on deterministic and

probabilistic tractography has involved estimating the fiber-ODF independently at each

voxel and performing tractography as a post-processing step with path regularization. In

this work, we proposed a method for simultaneous estimation and tractography using two-

and three-tensor mixtures. Using an unscented Kalman filter provided robust parameter

estimation and demonstrated significantly higher angular accuracy compared to various

nonparametric and independent optimization techniques. Specifically we found an angular

error of 5-10◦ in regions with fiber crossings compared to 15-20◦ using a common spherical

harmonic technique, and it is able to reliably resolve crossings down to 20-30◦ compared to

spherical harmonics which reaches only down to 50-60◦. In vivo experiments demonstrate

the ability of the proposed method to reveal fibers known to exist anatomically, e.g . lateral

transcallosal fibers or temporal insertions along the fronto-occipital fasciculus, yet absent

using the comparison techniques.

Nevertheless, there are several aspects of this technique that could be improved in future

work. First, we believe improvements can certainly be made with the local model. For

example, switching filters may provide a natural method for reduced parameter estimation

where appropriate. Further, we believe it is still important to explore constrained models

(convex weights, positive eigenvalues) [102] as well as approaches at model selection [22].

Second, as is often the case in tractography, reported connections may be invalid (false-

positives). For example, the partial voluming along the cingulum bundle in Figure 3.20

causes many spurious traces. There are several possible approaches to suppressing such

false positives (e.g . higher resolution scans, more appropriate local models, alternative filter

formulations), but we believe that incorporating global information will ultimately have
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more effect than more local choices in the model or filter.

In summary, we believe that filtering techniques offer significant increases in sensitiv-

ity over traditional independent optimization methods, but care must be taken ensuring

anatomically correct results. We believe that exploring both alternative models and fil-

tering techniques will provide more accurate and comprehensive information about neural

pathways and ultimately enhance non-invasive diagnosis and treatment of brain disease.
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