
Stereotactic laser ablation of symptomatic cavernous malformations

imaging and clinical outcomes

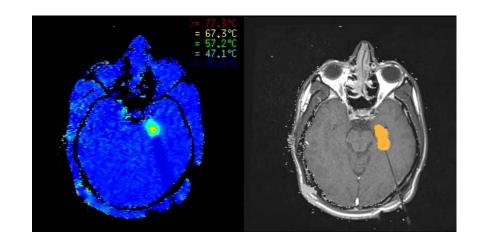
James Malcolm Matthew Stern, Daniel Drane Jon Willie, Robert Gross

Disclosures

None

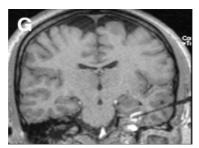
Introduction

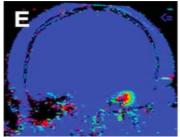
- Cerebral cavernous malformations (CCMs) are abnormal vascular malformations that tend to bleed

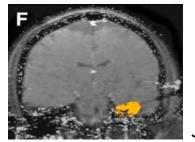

- Risk of hemorrhage is 2.4% over 5 years*
- Present as seizures, headache, neurologic deficit, or incidental finding
- Asymptomatic management: observe, serial MRI over 2-3 years
- Symptomatic: resection
 - Risk of death/stroke after resection is 6% over 2-3 years*

Why use a laser?

- Low flow implies low risk of hemorrhage from probe insertion
- Thermal coagulation removes risk of hemorrhage
- Good success using it to treat mesial temporal lobe epilepsy
- Minimal damage to surrounding healthy structures during approach
- Minimal length of stay

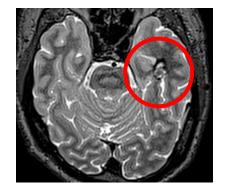

Safe? Effective?

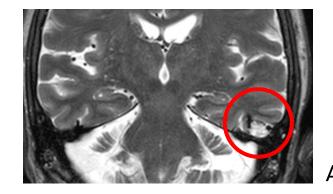




Methods

- Symptomatic CCMs: seizures, headaches w/ associated neuro deficit, progressive symptoms
- Workup: MRI, psychometric, PET, video-EEG
 - Concordant with lesion?
- Attendings: Jon Willie, Robert Gross
- Frame: ClearPoint MRI-compatible or traditional Cosman-Roberts-Wells
 - ClearPoint avoids transfers between scanner and OR
- Visualase workstation: real-time estimation of ablation zone





Patient Characteristics

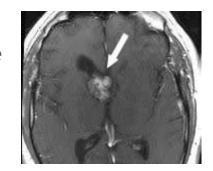
- n=20, 9 male, 11 female
- Mean age: 37 ± 17
- Mean preop symptom duration: 12.7 years
- 17 patients with seizures, 3 with headaches/deficit
- Most often located within temporal lobe
 - 1 basal ganglia, 2 thalamus

PC #4

λH #5

Complications

- No complications during laser fiber insertion (ie. no bleeding)
- Two aborted procedures, but repeat procedures were successful
 - One patient developed cardiac instability
 - One patient underwent awake procedure for thalamic CCM, complained of pain at pin sites, deflection. Repeat procedure with full anesthesia.
- One patient bled during ablation (4.2 cm³ basal ganglia) and procedure terminated after incomplete ablation, symptom improvement at f/u
- Two patients with neurologic deficit post-procedure
 - #11 SS (basal ganglia bleed), hemiparesis, only subtle spasticity at last f/u
 - #7 SR left C1-C2 numbness, recovered at last f/u
- No lasting perioperative complications


Clinical Outcomes

- 14 patients with > 1 year follow up
 - \circ Mean follow up: 18 mo \pm 7.5
 - 2 lost to followup
 - 4 ablated within past year, included for perioperative complications
- 11 of 12 epileptic patients with one year f/u were seizure free (92%)
 - One patient went on to resection (#3 JC)
 - Unclear initial diagnosis
 - ICM/resection at 9 months ⇒ seizure free
- 2 of 2 headache patients with one year f/u had decreased symptoms

Comparison to other techniques

- Current series: 92% seizure free at 12 months (n=11/12)
- Microsurgical Resection is the Gold Standard
 - Resect both lesion and surrounding epileptogenic tissue
 - Ring of gliosis and macrophages filled with hemosiderin
 - Leave developmental venous anomaly (infarction)
 - Seizure control is 75%*
- Stereotactic radiosurgery
 - May take 1-3 years
 - Continued risk of hemorrhage
 - Associated radiation morbidity
 - Seizure control is 53%[#]

^{*} Rosenow 2013, Ruan 2015 *Bartolomei 1999

Conclusions

- Small preliminary case series
- Increased efficacy compared to open resection
 - Seizure freedom: 92% laser vs 75% open
- Minimally invasive
 - LOS 1-2 in most patients (BG bleed LOS 3)
- Minimal risk profile
 - No long-term complications
- Can always undergo later resection

