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ABSTRACT
An efficient method for separating an object from the back-
ground in an image is presented. The segmenting curve,
corresponding to the object boundary, is represented as the
zero level set of a signed distance function. Most exist-
ing region based methods in the geometric active contour
framework perform segmentation by maximizing the sepa-
ration of intensity moments inside and outside the evolving
contour. We generalize these methods by minimizing the
Bhattacharyya distance so that it separates regions of dif-
ferent distributions. Preliminary results show that the pro-
posed method can segment low contrast, complex images
with a very simple curve flow equation.
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1 Introduction

Image segmentation has been a topic of extensive research
in the computer vision community; see [1, 2, 3, 4, 5, 6, 7]
and the references therein. In particular, geometric active
contours (GAC) have been successfully used for this task.
Most of these methods use photometric information such as
intensity, color or texture to segment an object. In the GAC
framework, an image based energy functional, typically a
function of the image intensity moments, is minimized to
separate an object from the background. More specifically,
a closed curveC, represented implicitly as the zero level
set of a signed distance function [8, 9], is evolved so that it
minimizes an image based energy functional. In this work,
we propose to minimize a novel energy functional which
represents the distance between the probability distribution
function (pdf) inside and outside the curveC, i.e., the dis-
tance between the pdf of the object and the background,
assuming that each region is realized by a unique random
variable.

There is a large body of literature concerning the
problem of separating an object from its background; see
for example [1, 4] and the references therein. The level set
framework has proven to be quite useful for this task. The
authors in [10] use mean intensities to perform segmenta-
tion, which is a special case of the more general Mumford-
Shah segmentation model [11]. In [12, 13, 14], the authors
proposed a variational framework for segmenting an object

using the first two moments (i.e., mean and variance) of
image intensities. All the methods mentioned above uti-
lize image statistics from the entire region, while there ex-
ist methods that use local information, i.e., edges [15, 16].
Most of the region based models have been inspired by the
region competition technique of Zhu and Yuille [17]. An-
other method proposed by Freedmanet al. [2], maximizes
the Bhattacharyya distance between a known pdf and the
pdf of the region insideC. This method requires “learn-
ing” the pdf of the desired regiona-priori. Further, an ad-
ditional approach that is very closely related to our work
is given in [18]. Here, the authors propose an information
theoretic approach to segment an object by maximizing the
mutual information between the region labels and the im-
age intensities. The curve evolution proceeds by computing
the log-likelihood ratio of the points on the curveC. This
method also employs information available from the pdf of
the region inside and outsideC.

In this paper, we propose to minimize the distance be-
tween pdf’s by using the Bhattacharyya distance [19], in or-
der to separate two regions with different pdf’s without any
a-priori knowledge about the object or background. The
technique proposed in this present work is most closely re-
lated to the one in [18] which also uses pdf’s to determine
the optimal segmentation. However, our formulation of the
problem and the resulting flow are quite different. Initial
experimental results show that the performance of the pro-
posed method is similar to that proposed by [18] and better
than methods that use only the first two intensity moments.
We should however note that, the proposed method uses
a different metric (compared to [18]) to compute distance
between two pdf’s, and is simpler to understand and com-
putationally less complex.

2 The Bhattacharyya Flow

An object can be represented by a closed curve enclosing
its boundary. Many possible parameterizations of planar
shapes described as closed contours have been proposed
(see [20, 21] and the references therein). Recently, level
set methods, which use an implicit representation of con-
tours, have become very popular [8, 9]. The curveC is
represented as the zero level set of a higher dimensional
function, typically a signed distance functionφ : R2 → R,
such thatφ < 0 insideC andφ > 0 outsideC. This repre-
sentation allows for natural breaking and merging of curve



topologies, hence we have decided to use it in the present
work.

The Bhattacharyya distance [19] gives a measure of
similarity between two pdf’s, i.e.,

B =

∫

Z

√

Pin(z)Pout(z) dz, (1)

wherez ∈ Z is a photometric variable such as intensity,
a color vector or a texture vector, and lives in the space
Z, while Pin andPout are pdf’s defined on the variablez
for the inside and outside regions respectively. This mea-
sure varies between0 and1, where0 indicates a complete
mismatch and1 indicates complete agreement between the
pdf’s. Let x ∈ R2 specify the coordinates in the image
plane, and letI : Ω ⊂ R2 → Z be a mapping from the
image plane to the space of the photometric variable. The
pdf Pin (or Pout) is assumed to be defined by

Pin(z) =

∫

ω
K(z − I(x)) dx
∫

ω dx
=

∫

ω
K(z − I(x)) dx

Ain

(2)
which is the nonparametric kernel density estimate of the
pdf of z for a given kernelK. Typical choices forK are the
Dirac delta functionδ(.) and the Gaussian kernel given by
K(y) = 1√

2πσ2
exp (−y2/2σ2). The rest of the derivation

is independent of the choice of the kernelK. For the case
of curve evolution,Pin is the density of the region inside
the curveC. Thus,ω is the region enclosed byC. Writing
(2) in terms of the level set functionφ, we get

Pin(z) =

∫

Ω
K(z − I(x)) H(−φ(x)) dx
∫

Ω
H(−φ(x)) dx

, (3)

whereH is the Heaviside step function given by:

H(φ) =















1 φ > ǫ ,

0 φ < −ǫ ,
1

2
{1 + φ

ǫ + 1

π sin
(

πφ
ǫ

)

} else,

andΩ is the whole image domain. Similarly,Pout(z) can
be written as

Pout(z) =

∫

Ω
K(z − I(x)) H(φ(x)) dx
∫

Ω
H(φ(x)) dx

. (4)

Computing the first variation of (1), we get the following:

∂Pin(z)

∂φ
=

δǫ(φ)

Ain
(Pin(z) − K(z − I(x))) ,

∂Pout(z)

∂φ
=

δǫ(φ)

Aout
(K(z − I(x)) − Pout(z)) ,

∇φB =
1

2

∫

Z
(Pin(z) Pout(z))−1/2×

(

∂Pin(z)

∂φ
Pout(z) + Pin(z)

∂Pout(z)

∂φ

)

dz.

Combining all of the equations above, we obtain the fol-
lowing PDE:

∂φ(x, t)

∂t
= −

Bδǫ(φ)

2

(

1

Ain
−

1

Aout

)

−
δǫ(φ)

2
×

∫

Z
K(z − I(x))

(

1

Aout

√

Pin(z)

Pout(z)
−

1

Ain

√

Pout(z)

Pin(z)

)

dz,

(5)

whereAin andAout is the area inside and outside the curve,
respectively. The first term in this equation determines
the “global” direction in which the entire curve moves,
whereas the second term determines the “local” evolution
direction. Thus, the initial motion of the curve is influ-
enced by the “global” term, while its contribution is mini-
mal whenB is close to zero indicating convergence of the
curve evolution.

It should be noted that the above evolution equation is
quite general and can be used with vector valued variablez
as in the case of color images or with the output of a filter
bank which captures texture information. In the present
work we restrict our experiments to the case wherez is
the set of gray level values in the set{1, 2, ..., 256}. A
detailed analysis for other types of photometric information
is the subject of future research. For numerical experiments
in this work, we have usedK(z − I(x)) = δ(z − I(x)),
with I(x) being the gray level intensity values andδ(.) is
a smooth Gaussian kernel with a predefined variance. A
smooth approximation was used forδǫ(φ), i.e.,

δǫ(φ) =

{

0 φ > ǫ, φ < −ǫ,
1

2ǫ

(

1 + cos(πφ
ǫ )
)

otherwise.
(6)

In numerical experiments, a regularizing term is added pe-
nalizing the curve length so that the contour is smooth, i.e.,

∫

Ω

‖ ∇H(φ) ‖ dx.

Thus, the final expression for the level set evolution is given
by

∂φ

∂t
= δǫ(φ) (V + α κ) (7)

whereκ is the curvature,α is a user defined weight andV
is the speed term from equation (5):

V = −
B

2

(

1

Ain
−

1

Aout

)

−
1

2
×

∫

Z
K(z − I(x))

(

1

Aout

√

Pin(z)

Pout(z)
−

1

Ain

√

Pout(z)

Pin(z)

)

dz.

3 Experiments

In this section, we demonstrate the segmentation results ob-
tained by applying the above PDE on several images. In



the first example, we segment the classic image of a ze-
bra. This image has been segmented successfully by sev-
eral other methods. In [22], a small patch of the texture of
the zebra was learneda-priori and this knowledge was used
in the segmentation process. The authors in [23] minimize
the K-L divergence measure between two Laplacian distri-
butions to obtain appropriate segmentation. The method in
[24] uses a stochastic active contour method to lock on to
the sharp edges of the zebra. This method, however, re-
quires the edges to be relatively sharp, which makes it vul-
nerable to noisy environment. The proposed method how-
ever suffers from no such limitations as will become clear
from the next set of examples. Figure 1 shows the initial
contour and the final segmentation result. The segmen-
tation is a natural consequence of separating the bimodal
distribution of the zebra and unimodal distribution of the
background. The method proposed in [18] can in principle
segment such trimodal images as was demonstrated by seg-
menting an image of a leopard. Thus, the proposed method
is an alternative to the one presented in [18]. We should
note however that the method proposed in the current work
follows directly by taking the first variation of the Bhat-
tacharyya distance, whereas the one proposed in [18] re-
quires an approximation to compute the entropy and taking
the first variation of a complicated energy functional with
double region integrals, which makes it less efficient from
the computational point of view.

Medical images are inherently noisy and have poor
contrast. The proposed method provides a natural way to
segment such images. In our second example, we segment
a slice of the caudate nucleus. The starting contour and
the corresponding distributionsPin andPout are shown in
Figure 2. The final segmentation along with the densities
is also shown. Figure 2 shows the segmentation result us-
ing the algorithm of [4] which uses the first two intensity
moments. This example demonstrates the robustness of the
proposed method in cases where the first two intensity mo-
ments fail to give the desired results.

The third example demonstrates the power of the pro-
posed method to segment regions with same mean and vari-
ance. This toy example was generated by adding Gaussian
noise to the original image to create regions with the re-
quired distributions. Figure 3 shows the progression of the
segmenting contour along with the final distributionsPin

andPout. This example shows that the proposed method
can segment objects layered on a textured background.

Finally, a toy example was contrived to demonstrate
the power of the proposed method : the ability to sepa-
rate regions indistinguishable by the human eye. The back-
ground in this synthetic image was generated by sampling

from a Rayleigh distribution :x ∼ p(x) = xe
−x

2

2 with
meanm =

√

π
2
. The object (referred below as cat) was

generated by sampling from a different random variabley
whose distribution is related tox via y = 2m − x. It can
be easily shown that, the object and the background (x and
y) have the same mean and variance. Figure 4 shows the
original image and the generated image. Segmenting such
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Figure 2. Caudate: Initial and final segmentation with the
corresponding densities. Dark line gives the inside density
Pin while dotted line showsPout. The bottom segmen-
tation uses the method in [4] with the first two intensity
moments, which yields an incorrect segmentation.

an image is indeed a challenge. Figure 5 and 6 show the
different stages of the evolving contour, along with the ini-
tial, final and actual distribution inside and outside the cat.
As is clear, the final distribution is very close to the actual
pdf’s.

4 Conclusion and Future Research

In this work, we have proposed a novel method to seg-
ment an image in the geometric active contour framework
by minimizing the Bhattacharyya distance between the pdf
inside and outside the evolving contourC. The method
is capable of separating regions even with the same mean
and variance but differing only in the third and higher order
moments. However, a detailed comparison of the proposed
method with that in [18] is the subject of future research.
In particular, we should note the work in [25], where the
authors have shown that the Bhattacharyya distance per-
forms better than the K-L divergence or Fisher ratio for
a set of analytically known pdf’s. We are in the process
of comparing and contrasting these methods in the present
framework in terms of their segmentation ability and rate
of convergence.



Figure 1. Segmenting the zebra: initial, intermediate and final contour
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Figure 3. Toy Example 1: Same mean and variance. Last figure gives the distribution for the final segmentation.

Figure 4. Toy Example 2:Original image (left) and Generatednoisy image (right).

Figure 5. Toy Example 2: Same mean and variance inside and outside the object. Initial, intermediate and final contours.
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Figure 6. Toy Example 2:(From left to right) Distribution for the starting segmentation, final segmentation and actual distribu-
tion.
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