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ABSTRACT
We describe a probabilistic technique for separating two pop-
ulations whereby analysis is performed on affine-invariant
representations of each patient. The method begins by
converting each voxel from a high-dimensional diffusion
weighted signal to a low-dimensional diffusion tensor repre-
sentation. Three orthogonal measures that capture different
aspects of the local tissue are derived from the tensor repre-
sentation to form a feature vector. From these feature vectors,
we form a probabilistic representation of each patient. This
representation is affine invariant, thus obviating the need for
registration of the images. We then use a Parzen window clas-
sifier to estimate the likelihood of a new patient belonging to
either population. To demonstrate the technique, we apply
it to the analysis of 22 first-episode schizophrenic patients
and 20 normal control subjects. With leave-many-out cross
validation, we find a detection rate of 90.91% (10% false
positives).

Index Terms— Diffusion Tensor Imaging (DTI), Classi-
fication, schizophrenia, affine-invariant

1. INTRODUCTION

Nearly 1% of the population in the US is affected by schizophre-
nia. A growing body of evidence suggests that the early stages
of schizophrenia (and many other brain disorders) are critical
in forming and predicting the course and outcome of the dis-
order. The classification tools proposed in this work can serve
as a first step towards early detection of schizophrenia, which
may result in a better prognosis and functional outcome.

Both, post-mortem and neuroimaging studies have con-
tributed significantly to what we know about the brain. More-
over, MRI studies of volumetric reduction in several brain
regions in schizophrenia have been particularly informative
with respect to confirming early speculations that the brain is
disordered in schizophrenia. This work is largely the result of
advances in neuroimaging that allowed for more careful mea-
surement of regions of interest within the brain (see review
in [1,2]). In particular, a shape based framework was recently
developed by the authors in [3], which utilized volumetric dif-
ferences as discriminatory features for distinguishing a pop-
ulation of schizophrenia from normal controls (NC). Another
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recent work in this direction was proposed in [4], where the
authors used the affine parameters obtained during registra-
tion of each subject to a given atlas as a discriminant feature.
However, both works, used structural MRI data, as opposed
to diffusion MRI being used in this study.

The advent of diffusion magnetic resonance imaging
(dMRI) has provided the opportunity for non-invasive in-
vestigation of neural architecture of the brain. One of the
simplest and widely used model that is used to analyze dMRI
images is the diffusion tensor model. Diffusion tensors rep-
resent the diffusion of water molecules in three orthogonal
directions with the principal direction aligned with the fiber
orientation. Several scalar measures derived from this model
are used to assess the strength of connectivity in neural fiber
bundles.

While there has been an explosion in the number of stud-
ies reporting statistical differences in various regions of the
brain (see [2] and the references therein), very few works
have addressed the problem of classifying schizophrenic pa-
tients from healthy subjects. Apart from structural MRI data
being used by [3, 4], there has been work done by [5, 6],
where the authors use dimensionality reduction followed by
linear discriminant analysis for classification of patients with
schizophrenia (chronic). They use the fractional anisotropy
and/or linear anisotropy images derived from single tensor es-
timation as discriminant features.

In all of the approaches listed above [3,5], the authors first
perform a registration of all the subjects to a common atlas
space and subsequent analysis is done on this dataset. How-
ever, as has been shown by the authors in [7], transforming
the images from subject space to atlas space can significantly
change certain quantities under study (for example, volume).
Thus, errors accrued during registration are carried forward
in subsequent analysis, in particular in classification tasks. To
avoid such errors and to reduce the computational complexity,
we propose an affine-invariant classification scheme, which
removes the need for registration of the images. We employ
several anisotropy features of the white matter of the brain
to discriminate first-episode (FE) schizophrenia patients from
normal controls (NC) in a probabilistic fashion.



Fig. 1. Overall outline for computing an affine invariant representation of each subject

2. METHODS

The algorithm proceeds by first computing an affine-invariant
probabilistic representation of each subject (see Figure 1).
From the dMRI scan of a subject, diffusion tensors are first es-
timated. Three orthogonal anisotropy measures [8] that form
the discriminatory features of our classifier are then computed
at each voxel in the white matter region. A nonparametric
density estimator is then used to convert the discriminatory
features of each subject into an affine-invariant proababilistic
representation. This representation is subsequently used by a
Parzen window classifier to compute the probability of a pre-
viously unseen subject being FE or NC in a cross-validation
scheme. Details on each of these steps is given in the next
section.

2.1. Preliminaries

In diffusion weighted imaging, image contrast is related to the
strength of water diffusion. At each image voxel, diffusion is
measured along a set of distinct gradients, u1, ...,un ∈ S2

(on the unit sphere), producing the corresponding signal, s =
[ s1, ..., sn ]T ∈ Rn. The diffusion tensor is related to the
signal using the following relation [9, 10]:

si = s0 exp (−buT
i Dui),

where s0 is a baseline signal intensity, b is an acquisition-
specific constant, and D is a tensor describing the diffusion
pattern. D can be estimated using a weighted least-squares
approach [11].

Several scalar measures derived from the single tensor
model have been proposed in the literature [8, 12, 13]. In
particular, we use a set of three orthogonal invariants stud-
ied in [8], namely the norm N , fractional anisotropy FA and
mode Md. These measures capture different (orthogonal) as-
pects of the shape of the tensor. Given, a diffusion tensor D,
these measures can be computed as follows:
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where, |.| denotes the determinant, tr(.) is the trace and � . �
denotes the frobenius norm of a matrix. Thus, FA measures
how the shape of the tensor deviates from that of a sphere.
Md indicates the mode of the tensor, i.e. Md = −1 indicates
planar anisotropy, Md = 0 indicates an orthotropic tensor

and Md = 1 indicates linear anisotropic tensor. Norm N
measures the “size” of the diffusion tensor. From the above
discussion, our feature vector is given by the 3-dimensional
vector

f = [N, FA, Md ]T . (2)

2.2. Affine Invariant Representations

All previous methods [3, 5] that performed classification of
schizophrenic patients, performed spatial normalization (reg-
istration) of the structural or FA images to a common atlas
space. A recent study by [7] has shown that registration can
introduce unwanted effects in the data set. In this work, we
avoid the errors accrued during registration by using a proba-
bility density based classifier.

Probability density functions (pdf) are invariant to trans-
lation, rotation, scale and shear of an image, i.e. pdf’s are
invariant under linear transformation of the coordinates of an
image. A nonparametric estimate of the pdf can be computed
using the following expression [14]:
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where I(x) is a scalar image at spatial location x, M is the
number of data points, G is a Gaussian kernel and h denotes
the bandwidth of the kernel.

The proposed feature set f lives in a 3-dimensional space.
Computing the joint pdf in such a high-dimensional space is
computationally intensive. Further, the features N, FA, Md

are mutually orthogonal and hence independent. As such,
we compute a 1D pdf for each feature separately using (3).
Note that, each of these features capture different aspects of
the variation in “shape” of the diffusion tensor and hence are
independent of the orientation. Thus, these measures them-
selves are invariant under affine transformations.

Several schizophrenia studies [2] have shown abnormali-
ties in the white matter region of the brain. We thus choose
this entire region (white matter) to compute the pdf. Specif-
ically, a diffusion tensor is estimated at each voxel and FA is
computed in the entire image volume. Regions of the brain
that have FA ≥ 0.4 are selected for further analysis. This
roughly corresponds to the white matter region in the brain.
All the other features (such as, Md, N ) are computed in this
region.

Using (3), we compute the pdf for each of the three dis-
criminatory measures and combine them into a matrix repre-
sentation denoted by p = [pn pfa pmd]. Thus, each patient



scan i can now been transformed into a probabilistic represen-
tation (matrix) pi of dimension nb × 3, where nb is the num-
ber of bins used in the pdf computation. In our subsequent
discussions, we will use this representation in our classifier.

Figures 2a,2b,2c, show the pdf’s for 22 first-episode (FE)
schizophrenic patients (red) along with 20 age-matched nor-
mal controls (NC) (blue). A visual inspection shows differ-
ences between the two groups (blue and red) for each of these
measures.

2.3. Parzen Window Classifier

The Parzen window classifier was first introduced by [15]. In
this method, a Parzen window based density estimate is used
to compute the probability that a new data point belongs to
one of the groups in the training data set.

Let {pi
fe}

Nfe

i=1 and {pi
nc}

Nnc
i=1 be the set of Nfe FE and

Nnc NC subjects in the training data set. Given a test data
point p̂, the probability that it belongs to either group can
be computed using the Parzen window density estimator as
follows:
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where K(., .) is a Gaussian kernel given by
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with f = [N, FA, Md ]T as described earlier, and i, j repre-
sent the indices for ith and jth subject.

For each of the two groups, we choose σf using the fol-
lowing relation:

σf =
cf

N

N�
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where N is Nfe for the group of FE patients and N = Nnc

for NC subjects. The constant cf is a scalar that is computed
so that the training error is minimized. Typical values for cf

lie in the range cf ∈ [1.5, 2]. This data driven approach of
choosing σf is quite common in the literature and has been
used in other works as well [16]. This choice of σf is guided
by the following considerations: 1) σf varies appropriately
with the scaling of each of the components of f , 2) It min-
imizes the training error of the classifier, 3) it respects the
distribution of points within the clusters (whether the points
are spread out or densely packed).

Thus, from the probabilities obtained in (4), we obtain the
following simple classification rule:

Classification of p̂ =

�
Pfe(p̂) > Pnc(p̂), p̂ is FE patient
Pfe(p̂) ≤ Pnc(p̂), p̂ is NC.

3. RESULTS

3.1. Data acquisition protocol

Our dataset consisted of 22 FE patients (all males) with aver-
age age 20.89±4.8 years and 20 NC (all males) with average
age 22.3 ± 4.2 years. All the subjects were scanned as part
of Dr. Martha Shenton’s NIH grant (P50 MH 080272) on a
3-Tesla GE system using an echo planar imaging (EPI) dif-
fusion weighted image sequence. A double echo option was
used to reduce eddy-current related distortions. To reduce im-
pact of EPI spatial distortion, an eight channel coil was used
to perform parallel imaging using Array Spatial Sensitivity
Encoding Techniques (GE) with a SENSE-factor (speed-up)
of 2. Acquisitions have 51 gradient directions with b-value =
900 and eight baseline scans with b=0. The original GE se-
quence was modified to increase spatial resolution, and to fur-
ther minimize image artifacts. The following scan parameters
were used: TR 17000 ms, TE 78 ms, FOV 24 cm, 144x144
encoding steps, 1.7 mm slice thickness. All scans had 85 axial
slices parallel to the AC-PC line covering the whole brain.

The raw diffusion weighted images were preprocessed us-
ing the Rician noise removal algorithm of [17] followed by
eddy current and head motion correction algorithm [18] (part
of the FSL package - http://www.fmrib.ox.ac.uk/
fsl/flirt/).

3.2. Classification Results

Leave-many-out (LMO) is an unbiased technique for cross-
validation of classification results [19,20]. We used this tech-
nique to test our classifier. In this method, M subjects are re-
moved at random from the dataset and the classifier is trained
on the remaining samples. Testing is then done on these M
subjects and classification scores are computed from several
such runs.

In this work, we performed several experiments by train-
ing the classifier on different number of samples. Training
was done separately by randomly selecting Tp = { 60%,
70%, 80%, 90%, 98% } of the total (here 42) samples re-
spectively. For each Tp (say 60%), 1000 different training
datasets were randomly generated and testing was performed
on the remaining (say 40%) data. A particular test subject
was classified as FE or NC based on a majority voting rule.
In all of the scenarios, where the training set consisted of
60% to 98% of the total samples, the classifier consistently
gave a detection rate (true positives) of 90.91% with 10%
false positives. The overall classification error was 9.52%.
Alternatively, the sensitivity was 90.91% and specificity was
90%. Figure 3 shows the frequency plot (the number of times
a subject was classified as FE or NC on 1000 different train-
ing samples) for the case when 30% of the samples were used
in testing. During this run, on an average, each subject was
tested approximately 310 times on different training data sets.
Similar results were obtained with other training data sets as
well.



(a) Norm (b) Mode (c) FA
Fig. 2. Probability density functions of the three anisotropy measures for 22 FE patients (red) and 20 NC (blue).

Fig. 3. Frequency plot showing the number of times each
subject was classified as FE or NC with 70% of the data used in
training. Frequency below 0.5 indicates misclassification by the
classifier. 4. CONCLUSION

In this work, we proposed a probabilistic and affine-invariant
representation of each subject obtained by extracting anisotropy
features from diffusion tensor estimated at each voxel. This
representation is used within a Parzen window classifier
framework to classify each subject as being FE or NC. A
leave-many-out cross-validation scheme was used to test the
classifier on previously unseen data. On several different
experimental settings, the classifier consistently gave a detec-
tion rate of 90.91% with 10% false positives.
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