degree of age-related brain asymmetry plasticity relatively independent of illness status.

do:10.1016/j.schres.2010.02.593

Poster 99

GYRIFICATION IN TWINS DISCORDANT FOR SCHIZOPHRENIA

Igor Nenadic1, Raka Maitra1, Christian Gaser1, Matthias Weisbrod2, Marco Picchioni3, Timothea Touloupoulo3, Robin Murray1, Heinrich Sauer1

1Department of Psychiatry and Psychotherapy, Friedrich-Schiller University of Jena, Jena, Germany; 2Department of Psychiatry, University of Heidelberg, Heidelberg, Germany; 3Institute of Psychiatry, London, United Kingdom

Background: Measures of cortical folding have increasingly been used to assess morphological properties previously not measured in high-resolution MRI scans. Assumed to be under genetic influence and relatively stable over the (adult) life-span, the local gyrification index can be measured in 3D across the entire cortical surface. Here we present initial results from the STAR consortium and EUTwinsS network assessing differences in cortical gyrification in monozygotic (MZ) twins discordant for schizophrenia and healthy controls to assess the impact of disease manifestation on cortical folding. This design is chosen to match for genetic Background (quasi-identical in MZ twins) to study disease effects, especially for the prefrontal cortex, where alterations in gyrification have been described in singletons with schizophrenia.

Methods: We analysed samples from two network sites: 7 MZ twin pairs discordant for schizophrenia and 7 MZ healthy control twin pairs (Heidelberg sample) and 8 MZ twin pairs discordant for schizophrenia and 8 MZ healthy control pairs (London sample). Cortical surfaces were extracted using FreeSurfer software from high-resolution MRI scans (1.5 T) and local gyrification was then calculated using local curvature-based measures developed in-house (Luders et al., NeuroImage 2006).

Results: Comparing the affected MZ twin to his/her co-twin, we found altered gyrification in frontal areas in both samples, albeit at somewhat different locations: in the right medial prefrontal area for the Heidelberg sample and more anterior in the right frontopolar cortex in the London sample.

Discussion: If replicated in our on-going extension of these samples, these findings would suggest that disturbed prefrontal gyrification in schizophrenia is not purely an effect of genetic mechanisms, as it differs between monozygotic twins. Rather, it might (at least in part) reflect the expression of the disease phenotype or even progressive changes.

Poster 101

DECREASED FRACTIONAL ANISOTROPY IN INTER-HEMISPHERIC CONNECTION BETWEEN BILATERAL SUPERIOR TEMPORAL GYRUS GRAY MATTER IN CHRONIC SCHIZOPHRENIA

Hsiao Piau Ng1,2, Marek Kubicki1,3, Yogesh Rathi1,3, James Malcolm1, Paula Pelavin1, Ron Kikinis4, Martha E. Shenton1,3,4

1Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, USA; 2Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; 3Clinical Neuroscience Division, Laboratory of Neuroscience Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School Brockton, Massachusetts, USA; 4Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, USA

Background: The superior temporal gyrus (STG) is one of the most frequently reported gray matter structures to be implicated in the timing, nature, and progression of such abnormalities are not clear. The folding of the cerebral cortex is mainly determined during gestation and early childhood and thus represents a window for investigating the early development of the brain. The aim of this study was to investigate differences in cortical folding using automated magnetic resonance imaging (MRI) tools between patients with schizophrenia and healthy control subjects.

Methods: MRI scans were acquired from 208 patients with schizophrenia and 206 healthy subjects from two separate cohorts, one recruited at the Karolinska Hospital in Stockholm, Sweden (96 patients and 105 healthy subjects, mean age patients and controls 42 years, mean duration of illness among the patients 17 years) and the other recruited at the University of Oslo, Norway (112 patients and 101 healthy subjects, mean age patients 31 years, mean age controls 37 years, mean duration of illness among the patients 4 years). The scans were processed with an automated computer-based method for measuring the local gyration index (GI) at numerous points across the cortex. The method is freely available at http://surfer.nmr.harvard.edu/ surfer/sgi. The GI is computed as the ratio between the area of the folded cortical surface within a defined radius from the vertex and the area of the outer cerebral surface within the same radius. A higher index indicates a higher degree of cortical folding. General linear models controlling for age and gender were used to analyse differences in GI between patients and controls. A false discovery rate (FDR) of 5% was applied to correct for multiple tests.

Results: Lower GI was found among the patients in areas comprising the lateral posterior temporal cortex in the right hemisphere, and the pericentral cortex in the left hemisphere (p < 0.01, uncorrected). When adjusting for FDR, the group differences in left pericentral cortex remained significant. The results were essentially similar in both cohorts. In the Swedish cohort, including patients in a more chronic phase of the illness, lower GI was found both in the right lateral posterior temporal cortex and in the left pericentral cortex, while in the Norwegian cohort, including patients in an earlier phase of the illness, lower GI was found predominantly in the left pericentral cortex (p < 0.01, uncorrected).

Discussion: The results indicate that degree of folding is reduced in distinct areas of the cerebral cortex among patients with schizophrenia. The similar pattern of findings across two separate cohorts with patients at different stages of the disease indicates that reduced degree of folding may be an inherent feature of schizophrenia. The results further suggest a neurodevelopmental origin for the disease.

Poster 100

REDUCED BRAIN CORTICAL FOLDING IN SCHIZOPHRENIA

Ragnar Nesvåg1,2, Marie Schaar3, Unn K. Haukvik2, Lars M. Rimol2, Elisabeth H. Lange1,2, Cecile B. Hartberg2, Erik G. Jönsson4, Ingrid Melle5, Ole A. Andreassen2, Ingrid Agartz1,2,4, Stephan Eliez3

1Diakonhjemmet Hospital, Oslo, Norway; 2University of Oslo, Oslo, Norway; 3Karolinska Institutet, Stockholm, Sweden; 4Oslo University Hospital, Oslo, Norway

Background: Morphological brain abnormalities have been extensively reported in MRI-based studies of patients with schizophrenia. The superior temporal gyrus (STG) is one of the most frequently reported gray matter structures to be implicated in the timing, nature, and progression of such abnormalities are not clear. The folding of the cerebral cortex is mainly determined during gestation and early childhood and thus represents a window for investigating the early development of the brain. The aim of this study was to investigate differences in cortical folding using automated magnetic resonance imaging (MRI) tools between patients with schizophrenia and healthy control subjects.

Methods: MRI scans were acquired from 208 patients with schizophrenia and 206 healthy subjects from two separate cohorts, one recruited at the Karolinska Hospital in Stockholm, Sweden (96 patients and 105 healthy subjects, mean age patients and controls 42 years, mean duration of illness among the patients 17 years) and the other recruited at the University of Oslo, Norway (112 patients and 101 healthy subjects, mean age patients 31 years, mean age controls 37 years, mean duration of illness among the patients 4 years). The scans were processed with an automated computer-based method for measuring the local gyration index (GI) at numerous points across the cortex. The method is freely available at http://surfer.nmr.harvard.edu/ surfer/sgi. The GI is computed as the ratio between the area of the folded cortical surface within a defined radius from the vertex and the area of the outer cerebral surface within the same radius. A higher index indicates a higher degree of cortical folding. General linear models controlling for age and gender were used to analyse differences in GI between patients and controls. A false discovery rate (FDR) of 5% was applied to correct for multiple tests.

Results: Lower GI was found among the patients in areas comprising the lateral posterior temporal cortex in the right hemisphere, and the pericentral cortex in the left hemisphere (p < 0.01, uncorrected). When adjusting for FDR, the group differences in left pericentral cortex remained significant. The results were essentially similar in both cohorts. In the Swedish cohort, including patients in a more chronic phase of the illness, lower GI was found both in the right lateral posterior temporal cortex and in the left pericentral cortex, while in the Norwegian cohort, including patients in an earlier phase of the illness, lower GI was found predominantly in the left pericentral cortex (p < 0.01, uncorrected).

Discussion: The results indicate that degree of folding is reduced in distinct areas of the cerebral cortex among patients with schizophrenia. The similar pattern of findings across two separate cohorts with patients at different stages of the disease indicates that reduced degree of folding may be an inherent feature of schizophrenia. The results further suggest a neurodevelopmental origin for the disease.

Poster 101

DECREASED FRACTIONAL ANISOTROPY IN INTER-HEMISPHERIC CONNECTION BETWEEN BILATERAL SUPERIOR TEMPORAL GYRUS GRAY MATTER IN CHRONIC SCHIZOPHRENIA

Hsiao Piau Ng1,2, Marek Kubicki1,3, Yogesh Rathi1,3, James Malcolm1, Paula Pelavin1, Ron Kikinis4, Martha E. Shenton1,3,4

1Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, USA; 2Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore; 3Clinical Neuroscience Division, Laboratory of Neuroscience Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School Brockton, Massachusetts, USA; 4Surgical Planning Laboratory, MRI Division, Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School Boston, Massachusetts, USA

Background: The superior temporal gyrus (STG) is one of the most frequently reported gray matter structures to be implicated in...
schizophrenia [1,2]. Another line of research suggests loss of efficient inter-hemispheric communication as a possible source of schizophrenia pathology [3]. These findings led us to hypothesize differences in inter-hemispheric connections in white matter between left and right superior temporal gyrus (STG) gray matter. Such a study is technically challenging because single-tensor streamline tractography methods do not reliably resolve the fiber tracts of interest. In this study, we used a novel filtered two-tensor tractography method [4] to test the hypothesis in chronic schizophrenia.

Methods: Structural magnetic resonance images (MRI) and diffusion weighted images (DWI) were acquired from 18 patients with chronic schizophrenia (SZ) and 16 normal controls (NC). The two groups were matched in age, gender, handedness and parental socio-economic status. For all subjects, the gray matter of the bilateral STG was segmented from the structural MRI, which was registered to the DWI, using Freesurfer (http://surfer.nmr.mgh.harvard.edu, an automatic segmentation tool). They served as regions of interest (ROIs) to extract the inter-hemispheric fiber tracts connecting the STGs from whole-brain filtered two-tensor tractography. A clustering method [5] was then used to remove extraneous fiber tracts. The mean fractional anisotropy (FA), mode, trace, parallel and perpendicular diffusivity of the resulting fiber tracts were computed for each subject.

Results: ANOVA test revealed group effects for mean FA (p = 0.037) and perpendicular diffusivity (p = 0.040), but not for mean mode (p = 0.162), trace (p = 0.076) or parallel diffusivity (p = 0.339). Of note, the filtered two-tensor tractography method, unlike the single-tensor streamline tractography method, was able to reliably reproduce the fiber tracts between the bilateral STG gray matter for all subjects. This demonstrates its capability for tracing through crossings and branchings, which is impossible with single-tensor model.

Discussion: Findings suggest decreased FA and perpendicular diffusivity in inter-hemispheric fiber tracts between bilateral STG gray matter for SZ compared to NC, indicative of poorer white matter health in the former. Further studies will be carried out to associate these findings with positive and negative syndrome scale (PANSS) for schizophrenia, and to provide new insights into the role played by this inter-hemispheric connection between bilateral STG gray matter in thought and information processing.

References

[4] Malcolm, J., Shenton, M.E., Rathi, Y., 2009. Neural tractography registered to the DWI, using Freesurfer (http://surfer.nmr.mgh.harvard.edu, an automatic segmentation tool). They served as regions of interest (ROIs) to extract the inter-hemispheric fiber tracts connecting the STGs from whole-brain filtered two-tensor tractography. A clustering method [5] was then used to remove extraneous fiber tracts. The mean fractional anisotropy (FA), mode, trace, parallel and perpendicular diffusivity of the resulting fiber tracts were computed for each subject.

doi:10.1016/j.schres.2010.02.596