
 

 

Productive high-performance software for OpenCL devices  
John Melonakos*a, Pavan Yalamanchilia, Chris McClanahana, Umar Arshada, Michael Landesa, 

Shivapriya Jambotia, Abhijit Joshia, Shehzan Mohammeda, Kyle Spafforda, 
Vishwanath Venugopalakrishnana, James Malcolma 

aAccelerEyes, 3423 Piedmont Rd NE STE 330, Atlanta, GA, USA 30305 

ABSTRACT  

Over the last three decades, CPUs have continued to produce large performance improvements from one generation to 
the next. However, CPUs have recently hit a performance wall and need parallel computing to move forward. Parallel 
computing over the next decade will become increasingly defined by heterogeneous computing, involving the use of 
accelerators in addition to CPUs to get computational tasks done. In order to use an accelerator, software changes must 
be made. Regular x86-based compilers cannot compile code to run on accelerators without these needed changes. The 
amount of software change required varies depending upon the availability of and reliance upon software tools that 
increase performance and productivity. Writing software that leverages the best parallel computing hardware, adapts 
well to the rapid pace of hardware updates, and minimizes developer muscle is the industry’s goal. OpenCL is the 
standard around which developers are able to achieve parallel performance. OpenCL itself is too difficult to program to 
receive general adoptions, but productive high-performing software libraries are becoming increasingly popular and 
capable in delivering lasting value to user applications. 

Keywords: GPU, OpenCL, CUDA, Xeon Phi, FirePro 
 

1. BACKGROUND ON CPU PROCESSING TRENDS 
Over the last three decades, CPUs have continued to produce large performance improvements from one generation to 
the next. However, CPUs have recently hit a performance wall and need parallel computing to move forward.  

1.1 Clock frequency improvements for CPUs 

Up until 10 years ago or so, CPUs improved in speed mainly by increasing in the frequency of their clocks. For instance 
CPUs progressed from MHz speeds to 1 GHz to 2 GHz to 3 GHz and some even push into 4 GHz ranges. However, it is 
rare to see CPUs running above 4 GHz. There is an important reason for this. If the frequency gets too high, the chip can 
actually melt from the excessive power/heat. Today CPUs are typically seen running at 2 to 3 GHz, which is where they 
landed over 10 years ago. 

There are ways to make CPUs run faster. But that requires keeping them cool so they don’t melt. Even at 2-3 GHz a 
computer needs a lot of fans and heat conducting metal apparatuses (called heat sinks) to whisk away the heat from the 
chip. That’s why computers make noise; it’s the fans keeping the CPU cool. But fans only work up to 2-3 GHz. To push 
above that frequency range, liquid cooled solutions are needed. However, short of really hardcore computer geeks and 
gamers, no one really wants to put liquid in their computer. 

1.2 Task parallelism on CPUs 

So, in order to keep improving speed over the last 10 years, CPU manufacturers had to find other ways to improve 
things. They found improvements in adding more CPU cores (each of which is a full CPU) onto the same CPU chip. One 
of the cores could do one thing (like play a movie) which the other core did something else (like run Microsoft Excel). 
Since those tasks were split up between different CPU cores, each core did not have to work as hard to get the tasks done 
and faster experience could effectively be had without raising the clock frequency. 

This is where parallel computing first entered the technology scene in a big way. On CPUs, this is called “Task 
Parallelism.” In order for programs to actually use all the CPU resources, the software had to be re-written and re-
compiled with special consideration for the fact that the processor architecture had changed. 

Modeling and Simulation for Defense Systems and Applications VIII, edited by Eric J. Kelmelis,
Proc. of SPIE Vol. 8752, 87520C · © 2013 SPIE · CCC code: 0277-786X/13/$18

doi: 10.1117/12.2016216

Proc. of SPIE Vol. 8752  87520C-1

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2013 Terms of Use: http://spiedl.org/terms



ouujujipeThe e below illustrates task parallelism:

program:

if CPU="a" then
do task "A"

else if CPU="b" then
do task "13"

end if

end program

 

 

 
Figure 1. Pseudocode of task parallelism from wikipedia.org. 

 

1.3 Limits of multi-core processors 

So for the last 10 years, the industry has moved from single core, to dual core, to quad core. But again, it is uncommon 
to see CPUs with more than 4 actual cores. That is because with 4 cores on one chip, the size of the chip grows and the 
power/heat starts to rise again. So again, CPUs have hit again hit some physical barriers. And this time CPUs are having 
a much harder time figuring out how to deliver substantial performance improvements. Mainly CPUs are relying on 
making transistors smaller, so that the power per core requirements go down, so that more cores can be added. 

1.4 Good enough? 

Luckily, for most people, regular dual or quad core CPUs are good enough for the tasks that need to be done. If a 
computer is slow, it likely is not due to the CPU anymore. The bottleneck is much more likely to be the hard drive, 
upgrading to an SSD is the best way to speed up a standard computer today. 

However, for scientists, engineers, and financial analysts (i.e. for people that run big simulations), CPUs are still slow. 
AccelerEyes was founded in 2007 on the cusp of a transformative computing event when the high-end computing 
professionals realized CPUs were no longer going to improve as fast as is needed for their applications. 

1.5 The rise of heterogeneous computing 

The answer to this problem was found in using other processors to supplement the CPU in getting the computing work 
done. It started with leveraging the GPU (graphics processing unit) on the video card as a companion to the CPU in 
computational tasks. 

In my next post, I’ll talk more about how GPUs have made a permanent home in the world of computing and how 
heterogeneous computing is the name of the computing game for the next decade. 

1.6 Additional notes 

CPUs have also improved greatly over the years in architecture, caches, prediction, and more. But those improvements 
have not been sufficient to stem the tide of heterogeneous computing. 

CPUs also have ways to offload computations to data-parallel sections of their same chip (using SSE/AVX instructions). 
Those options are also not significant enough to alter the macro-level trends. 

Proc. of SPIE Vol. 8752  87520C-2

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2013 Terms of Use: http://spiedl.org/terms



 

 

2. BACKGROUND ON HETEROGENEOUS COMPUTING 
Over the last 20 years, big gains in computer processing have been defined by increases in CPU clock speeds, then by 
increases in the number of CPU cores. The next 10+ years will be defined by heterogeneous computing. 

2.1 Heterogeneous computing 

It is helpful to begin with a definition:  Heterogeneous computing is the coordination of 2 or more different processors, 
of different architecture types, to perform a computational task. “Architecture type” is defined below. 

In practice, that means that there is actually more than one processor in the computer. The general purpose CPU that is 
common place (of x86 architecture type) is typically present, but also another processor (of a different architecture type) 
is present in the system. That other processor is an “accelerator,” because it accelerates computations by assisting the 
CPU to get stuff done. 

Most computers already have an accelerator as a component. Many computers have more than one accelerator already 
present, even if the computer’s owner did not seek out the accelerator specifically for computational purposes. Some of 
those accelerators may even be more powerful in terms of ability to do processing than the CPU. However, it is very 
likely that the computer’s software is not using those accelerators for acceleration purposes. The accelerators are 
probably just sitting there unused. 

This is described in more detail below. 

2.2 The rise of GPU computing 

In most computers, there is a GPU (graphics processing unit), which is an accelerator to the CPU. Most people are aware 
of the GPU (which typically resides on a video card) as the thing that drives the computer monitor. The computer 
monitor is plugged into the video card/GPU. 

Innovations in GPUs over the last 20 years have been primarily driven by the demand for more awesome video games. 
Video games have advanced tremendously, going from Mario Brothers (which simply had some pre-computed pixel 
patters that are the same every time they are played) to the games today which are extraordinarily complex in how they 
perform physics calculations of wind-blowing, water-flowing, trees-swaying, and all sorts of other physical 
phenomenon. In games, GPUs can actually do all those physics calculations on-the-fly to determine the color of pixels to 
be sent to the monitor. It still blows my mind that there is a company1 purely dedicated to creating physical models for 
trees in video games (i.e. those physics calculations are extremely complex and the GPU has to be a beast of a processor 
to handle them). 

In order to support all of those physics calculations, GPUs have advanced from merely displaying to the monitor to 
actually having incredible capabilities to do math computations. The processing capability of the GPU is not limited to 
video games. In fact, any software program can use the GPU to do computations. Complex math can be executed on 
GPUs. Financial calculations can be performed on GPUs. Genomic sequencing can be accomplished on GPUs. 
Radiologists can find tumors in MRI scans using GPUs. 

In terms of sheer capacity to crunch numbers, GPUs can crunch more numbers per minute than CPUs. They have 
thousands of cores for number crunching. They are more powerful. They also use less energy per computation than 
CPUs. Note that a GPU core is not nearly as capable as a CPU core in terms of the kinds of things they can do, but there 
are many more of them available. 

The ability of GPUs, and other accelerators, to perform so well has to do with their ability to leverage “Data 
Parallelism.” The hundreds of light-weight cores on these accelerators enables them to crunch mathematical operations 
on many different data points simultaneously. 

                                                 
1 http://www.speedtree.com/ 

Proc. of SPIE Vol. 8752  87520C-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2013 Terms of Use: http://spiedl.org/terms



The program below expressed in pseudocode -which applies some

arbitrary operation, foo, on every element in the array d- illustrates

data parallelism:lnb 1]

if CPU = "a"
lower limit := 1
upper_limit := round(d.length /2)

else if CPU = "b"
lower limit := round(d.length /2) + 1
upper limit := d.length

for i from lower limit to upper limit by 1
foo(d[i])

 

 

 
Figure 2. Pseudocode of data parallelism from wikipedia.org. 

 

GPUs are also ubiquitous. Every computer, smartphone, and tablet has GPUs in them. 

2.3 Software for heterogeneous computing 

It is very fortuitous for the computing industry that these computational powerhouse accelerators are in so many 
computers already. 

However a serious challenge is presented in enabling software to run on the accelerators. It is not so fortuitous that most 
software is incapable of actually running on those accelerators. In order to use accelerators, software must be re-written. 

The process for re-writing software involves an understanding of parallelism. Software written for parallel computing 
runs circles around other software, because it is able to use the multiple cores of the CPU as well as the many cores of 
accelerators, like GPUs. 

2.4 The next decade: a tidal wave of heterogeneous computing 

The rise and success of GPU computing over the last 5 years, with NVIDIA as the hardware-vendor leader, solidified the 
validity of accelerators and has provoked a tidal wave of oncoming heterogeneous computing systems. As followers to 
NVIDIA, here is a list of other companies and their accelerators pushing heterogeneous computing as the primary path to 
computational performance increases over the coming decade: 

• Intel Xeon Phi – released this year as a 60+ core accelerator (they prefer the term “co-processor”). It has a new 
processor architecture with a ring of older x86 CPUs. 

• Intel integrated graphics – this is Intel’s GPU. It is not as capable as NVIDIA or AMD’s GPUs, but comes on 
the same chip as all Intel’s CPUs and is probably the most ubiquitous GPU today for that reason. 

• AMD FirePro and Radeon – these are the only other first-rate GPUs for desktops and servers. 

• AMD APUs – this is AMD’s merger of Radeon technology onto the same chip as the AMD CPU (i.e. APU = 
CPU + GPU). The GPU AMD is putting on APUs today is not as powerful as the full Radeon GPU, but it can 
still be used as an accelerator. 

• Altera FPGAs – these used to be restricted to very niche markets, but with the tidal wave towards 
heterogeneous computing, Altera’s FPGAs and FPGAs from other vendors will be considered as a viable option 
for many more applications. 

In addition to those, all smartphones and tablets have CPUs and GPUs. All these heterogeneous computing concepts 
apply equally well to getting more performance out of mobile apps. 

Proc. of SPIE Vol. 8752  87520C-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2013 Terms of Use: http://spiedl.org/terms



 

 

With all of these major companies pushing accelerators, heterogeneous computing is easily the biggest trend in 
computing for the coming decade. 

2.5 Additional notes 

“Architecture type” refers to the blueprint used to create the processor. Software that will run on one architecture will 
not run on another architecture without modification, either of the code itself or with the way it was compiled to run. 
AMD and Intel use the same blueprint, called “x86″, so software compiled for AMD will generally run on Intel and vice 
versa. Heterogeneous computing involves many different processors of different architecture types. Developing software 
for all those different types is complicated and will be described in a future post in this series. 

When we have described heterogeneous computing to people in the past, they often get over excited about accelerators 
and ask, “When will accelerators overtake CPUs and when will we no longer need CPUs?” That question misses the 
point. A good analogy is to think of a computer as an army. In that paradigm, CPUs would be the generals – highly 
capable and extremely efficient at command and control. Accelerators would be the foot soldiers, massive numbers of 
production units but not as capable at decision-making. 

3. PARALLEL SOFTWARE DEVELOPMENT AND OPENCL 
As described above, in order to use an accelerator, software changes must be made. Regular x86-based compilers cannot 
compile code to run on accelerators without these needed changes. The amount of software change required varies 
depending upon the availability of and reliance upon software tools that increase performance and productivity. 

There are four possible approaches to take advantage of accelerators in heterogeneous computing environments:  do-it-
yourself, use compilers, use libraries, or use accelerated applications (if lucky). 

3.1 Do-it-yourself 

The do-it-yourself approach is defined by taking an inordinate amount of software development time to write code that 
leverages all the parallel attributes of your heterogeneous computer. Hardware vendors such as AMD, Intel, and 
NVIDIA provide access to low-level tools that enable developing parallel code to run on their heterogeneous hardware. 

NVIDIA is the leader with the CUDA platform. CUDA is the first highly adopted platform enabling high-performance 
general-purpose GPU code. Developers of CUDA code write GPU kernels, manage different levels of GPU memory, 
make tradeoffs for data transfers between the host and the device, and optimize many other aspects of the parallel 
system. 

OpenCL is the industry’s open standard for similarly writing data-parallel code in heterogeneous computers. AMD and 
Intel both promote OpenCL as a primary approach towards programming their parallel computing hardware offerings. 
OpenCL requires a similar level of low-level understanding and competence to write efficient parallel software. 

Both CUDA and OpenCL are primarily targeted at leveraging data-parallelism of devices, and additional considerations 
must be made to use the multiple cores available on the CPUs in the system. For instance, OpenMP and MPI enable the 
use of multiple CPU cores and compute nodes in a heterogeneous system. 

The do-it-yourself approach is very costly in terms of developer muscle and expertise. The do-it-yourself approach does 
not adapt well to ongoing hardware updates. For instance, a parallel computing algorithm tuned for NVIDIA’s Fermi 
GPUs may not be the best algorithm choice for Kepler GPUs. These difficulties are what prompted AMD to say that 
most programmers will not use CUDA or OpenCL2. We agree. Most programmers will be smarter and will use the more 
productive approaches described below. 

The best attribute of the do-it-yourself approach is that it’s always available in case other more productive approaches 
fail. 

3.2 Use compilers 

Serious research attempts have been made by compiler developers to offload the brunt of parallel software development 
from manpower to compiler power. Unfortunately, these research attempts have not been very successful and the task of 
automatically finding the parallelism in a code is an unsolved research problem. 
                                                 
2 http://www.theinquirer.net/inquirer/news/2257035/amd-thinks-most-programmers-will-not-use-cuda-or-opencl 

Proc. of SPIE Vol. 8752  87520C-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2013 Terms of Use: http://spiedl.org/terms



 

 

There are some use cases where simple, straightforward loops can be unrolled by compilers and executed efficiently on 
parallel hardware without much human intervention. But those are not commonplace. 

Compilers can also get smarter as software developers introduce compiler-targeted directives (or software changes) that 
give the compilers hints about which things should be parallelized. However, many people have noticed that by the time 
you add sufficient compiler hints to the code to get good performance, you often would have been better off simply 
going the do-it-yourself approach in the first place. 

Compilers will continue to improve, but for many decades theoretical researchers have tried to solve the problem of 
automatic parallelism detection from code and have failed. In fact, it has been proven that it is impossible to 
automatically detect parallelism in many instances. 

The best attribute of compilers is that they work on simple arithmetic in loops; so if you have a very simple use case with 
simple operations, compilers are worth consideration. 

3.3 Use libraries 

Libraries benefit from the great performance of the do-it-yourself approach, as well as the easy-of-use of the compiler 
approach. Software libraries are written by parallel computing experts who are focused on optimizing the last bit of 
advantage out of one narrow function at a time. 

Today, heterogeneous software libraries are built on top of the CUDA or OpenCL platform and selection of the 
appropriate library depends upon the choice of platform. There are more CUDA libraries available today than OpenCL 
libraries, largely because NVIDIA has done a marvelous job at building a parallel computing ecosystem. However, with 
the recent emergence of Intel Xeon Phi and the growth of OpenCL’s utility in mobile computing, OpenCL libraries are 
becoming more and more prevalent than before. 

Use of libraries requires a trust upon the library’s developers. Common qualifying questions regarding libraries include:  
Is the library fast? Is the library stable? Is the library fully supported? Will the library be updated quickly as new 
hardware updates occur? Is there a community built around the library? 

Libraries that have strong responses to those questions have great benefits for software developers. Libraries that do not 
can be a waste of time, and developers would do well to not waste their time pushing on broken software. 

The best attribute of libraries is the ability to leverage expertly written parallel software while avoiding the time-sink of 
the do-it-yourself approach. 

3.4 Use accelerated applications 

As heterogeneous computing becomes more prevalent, many popular applications are becoming accelerator-enabled 
already. For instance, Adobe has products that are CUDA and OpenCL-accelerated for faster video transcoding. We are 
working with MathWorks on parallel tools. Ansys has GPU-accelerated products. And there are many more. 

Users of those products do not have to do heavy-lifting to get faster code. They simply get to benefit from the work done 
by the application developers, often with simple checkboxes or designations that indicate a preference towards 
accelerated computing. 

3.5 The next decade: challenges for parallel software 

The next decade will be defined by how the industry responds to the challenges of developing parallel software for 
heterogeneous computers, from high-performance computers down to mobile devices. Poor choices will lead to 
outcomes like that of the Roadrunner3 supercomputer (and IBM cell processor) which is being decommissioned after 
only a few years of use (see note below). Writing software that leverages the best parallel computing hardware, adapts 
well to the rapid pace of hardware updates, and minimizes developer muscle is the industry’s goal. 

OpenCL is the standard around which developers are able to achieve parallel performance. OpenCL itself is too difficult 
to program to receive general adoptions, but productive high-performing software libraries are becoming increasingly 
popular and capable in delivering lasting value to user applications. 

                                                 
3 http://www.hpcwire.com/hpcwire/2013-04-04/revelations_on_roadrunner_s_retirement.html 

Proc. of SPIE Vol. 8752  87520C-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/19/2013 Terms of Use: http://spiedl.org/terms


