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The role of diffusion tensor imaging in
spinal pathology: A review
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Abstract:

Diffusion tensor imaging (DTI) allows for noninvasive, in vivo visualization of white matter fiber tracts in the
central nervous system by measuring the diffusion of water molecules. It provides both quantitative and
qualitative (i.e., tractography) means to describe a region-of-interest. While protocols for the use of DTI are
better established in the brain, the efficacy and potential applications of DTI in spinal cord pathology are
less understood. In this review, we examine the current literature regarding the use of DTl in the spinal cord
pathology, and in particular its diagnostic and prognostic value in traumatic injury, spinal tumors, cervical
myelopathies, amyotrophic lateral sclerosis, and multiple sclerosis. Although structural magnetic resonance
imaging (MRI) has long been the gold standard for noninvasive imaging of soft tissues, DTI provides additional
tissue characteristics not found in the conventional MRI. We place emphasis on the unique characteristics of
DTI, its potential value as an adjunct imaging modality, and its impact on clinical practice.
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Key Message:

The current literature regarding the use of diffusion tensor imaging in the noninvasive, in vivo visualization
of white matter fiber tracts of the spinal cord by measuring the diffusion of water molecules is illustrated. Its
role in spinal cord pathology, and in particular, its diagnostic and prognostic value in traumatic injury, spinal

tumors, cervical myelopathies, amyotrophic lateral sclerosis, and multiple sclerosis is reviewed.

Diffusion tensor imaging (DTI) enables
noninvasive investigation of the neural
architecture. While structural magnetic resonance
imaging (MRI) has long been considered the gold
standard for imaging soft tissue in the clinical
setting, DT can provide additional insights into
tissue characteristics by utilizing the diffusion of
water molecules to act as a probe for assessing
tissue microstructure.!® In brief, a magnetic
field is used to induce movement of water
molecules, and the presence of intact nerve fibers
and their constituents (i.e., cell membranes,
myelin, and other macromolecules) hinders
this movement. Analysis of these diffusion
patterns provides several unique insights with
multiple applications throughout the nervous
system. In the brain, DTT has been used to better
characterize schizophrenia, dementia, and
affective disorders;*?! to evaluate the extent of
traumatic injury”! and ischemic infarcts; and to
preserve white matter pathways during tumor
resections.’1% Meanwhile, the role of DTI in
spinal pathologies is rapidly evolving and is
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currently the focus of intensive research both
in laboratory and in translational settings. In
this review, we focus on the translational use
of DTI in spinal pathologies, specifically with
respect to spinal cord trauma, tumors, cervical
myelopathy, amyotrophic lateral sclerosis, and
multiple sclerosis.

Diffusion Tensor Imaging

DTI aggregates and superimposes signals
from many water molecules in tissues to
create a simple model of diffusion, whereby an
elliptic (anisotropic) shape indicates strongly
directional diffusion and a spherical (isotropic)
shape indicates less directionality. Fibrous white
matter displays a highly anisotropic diffusion
pattern running parallel to the direction of
axons." From the data provided by DTI,
several measures can be calculated, whose
physical meanings and clinical interpretations
are summarized in Table 1. The apparent
diffusion coefficient (ADC) quantifies the
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magnitude of diffusion, with higher values indicating
less restriction and thus fewer intact fibers.'? Similarly,
fractional anisotropy (FA) describes the diffusion pattern,
with 'zero' meaning completely isotropic and 'one' meaning
strongly anisotropic. Recently, a large systematic review
investigating the use of various microstructural imaging
techniques in the spinal cord — including DTI, magnetization
transfer, myelin water fraction, MR spectroscopy, and
functional MRI - concluded that the FA value obtained from
DTI displayed the strongest empirical evidence of clinical
utility."® Additionally, tracing these diffusion patterns (termed
tractography) can guide the preoperative planning to spare
white matter tracts during tumor resections.'***! Additionally,
all of these analyses can also provide indices which estimate
myelination status and tissue health,”'” allowing for greater
diagnostic and prognostic accuracy.

Several challenges remain for the use of DTI in the spine.
Spatial resolution may be coarse and individual funiculi can
be difficult to distinguish.['¥l Figure 1 shows an axial view of a
b-zero weighted image of the cervical spine at the C5 level with
typical noise and artifact. Notably, optimizing signal-to-noise
ratio is challenging owing to the small volume of cord tissuel'”!
and non-uniform signal strength.*?!I This signal heterogeneity
increases the likelihood that FA is overestimated at lower FA
values. Some imaging artifacts are uniquely problematic
in the spine, such as significant contributions from bone and
lipid."! Additionally, dynamic artifacts such as cardiac and
respiratory motion, and cerebrospinal fluid pulsations may
also cause distortion,"**! but these can be mitigated by faster
imaging techniques and cardiac pulse gating.*! Figure 2 shows
the axial anatomy of the cervical region with calculated FA
map and labeled tracts.

Spinal Cord Injury

Noninvasive imaging is critically important for the clinical
management of SCI. Clinical information, such as the level of
injury, motor and sensory scores, and impairment assessments,
remain a cornerstone for determining prognosis and guiding
the therapeutic course for patients. However, these data can
be subjective, which necessitates objective imaging modalities

Figure 1: An axial, whole-cord b-zero weighted diffusion image taken at C5
showing typical noise and artifacts
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such as DTI to provide insight into axonal integrity and to
visualize the full extent of fiber disruption within and adjacent
to the injury site.”>*! Table 2 provides an overview of human
studies investigating DTT in SCL.

The injury site consistently demonstrates a lower FA value
compared to the noninjured controls.”*! This focal reduction
of FA appears dependent upon the completeness of injury,
which suggests a potential role for DTI in detecting objective
morphological changes during the progression between
acute and chronic stages of SCI,**%! as well as throughout the
recovery process.%¥ At the injury epicenter, a longitudinal
analysis of FA changes can successfully track the progression of
postinjury axonal degeneration, which may augment outcome
measures for predicting locomotor recovery.[*%

FA, axial diffusivity (AD), and severity in SCI have been
correlated with several clinical assessment metrics including
the American Spinal Injury Association motor score.®¥! The
severity of injury in these studies was confirmed histologically

Table 1: Physical measurement and clinical

interpretation of quantitative indices

DTI metric Physical Clinical interpretation
measurement

Apparent diffusion Average magnitude of Increased:

coefficient water diffusion in all Vasogenic edema
(ADC}/Mean directions Chronic compression
diffusivity (MD) Decreased:
Ischemia
Acute compression
Axial Magnitude of ADC High in normal white
diffusivity (AD) parallel to white matter matter
orientation Decreased:
Decreased neurologic
function
Radial Magnitude of ADC Low in normal white

diffusivity (RD) perpendicular to white matter

matter orientation Increased:
Axon degeneration
Demyelination

Decreased:
Acute compression
Fractional Degree of Increased:
anisotropy (FA) orientation-dependent  Acute compression
variation in ADC Decreased:

Chronic compression

Figure 2: (a) shows a cross-section of the cervical spinal cord with the gray and
white matter tracts. (b) shows the calculated fractional anisotropy of these tracts.
Blue regions indicate cerebrospinal fluid
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Table 2: Human studies investigating DTI in spinal cord injury

Author (year) Study design

Subjects (number)

Key results (P)

Ellingson et al. (2008) Prospective, cohort

Shanmuganathan et al. (2008) Retrospective, cross-sectional

Chang et al. (2010) Prospective, cohort

Rajasekaran et al. (2010)
Cheran et al. (2011)

Case report
Prospective, cohort

Cohen-Adad et al. (2011)

Endo et al. (2011)

Kamble et al. (2011)
Freund et al. (2012)

Prospective, longitudinal
Prospective, cohort
Petersen et al. (2012)
Koskinen et al. (2013)
Vedantam et al. (2012)

Mulcahey et al. (2013)
Vedantam et al. (2015)

Case report
Prospective, cohort
Retrospective, cross-sectional

SCI (10) vs ctrl (13)

SCI (20) vs ctrl (8)

SCI (10) vs ctrl (10)

BSS (1)
SCI (25) vs ctrl (11)

SCI (14) vs ctrl (14)
SCI (16)

SCI (18) vs ctrl (11)
SCI (9) vs ctrl (10)
SCI (19) vs ctrl (28)
SCI (28) vs ctrl (40)
BSS (2)

SCI (10) vs ctrl (15)
SCI (12) vs ctrl (12)

| FA at lesion (<0.001)

| MD throughout cord (<0.05)

FA correlated with completeness of injury
| FA (<0.0001) at lesion

|ADC at lesion (<0.031) and throughout
cord (<0.0001)

| FA at lesion (<0.001)

FA and FT correlated with ISCSCI functional scores
| FA at hemisection lesion

| FA at (<0.001) and caudal to lesion (<0.05)

| MD andtAD throughout cord (<0.001)

| FA (<0.0001), | AD (<0.05), and|RD (<0.05) at
lesion

FA and RD correlated with AIS (<0.01)

ADC correlated with postoperative recovery (=0.02)
| FA rostral and caudal to lesion (=0.001)

| FA at lesion (<0.05)

FA correlated with ULM scores (=0.03)

| FA'in whole-cord, LCST, and PC (<0.005)

FA correlated with AIS (=0.001), SSEP (<0.001)

| FA (<0.001), 1 MD (<0.001) and?RD (<0.001) at
lesion

FA correlated with ASIA score (<0.001)

| FA at hemisection lesion

| FA at lesion (<0.003)

| FA in whole-cord (<0.01) and LCST (=0.04)

FA correlated with AIS (=0.01), ULM score (=0.01)

ASIA = American Spinal Injury; AIS = Association Impairment Score; BSS = Brown-Sequard syndrome; ctrl = Control; FT = Fiber tractography;
ISCSCI = International Standards for the Neurological Classification of Spinal Cord Injury; LCST = Lateral corticospinal tract; PC = Posterior column;
SSEP = Spinal somatosensory evoked potential; ULM = Upper limb motor C score; FA: Fractional anisotropy; MD: Mean diffusivity; RD: Radial diffusivity;

AD: Axial diffusivity

in the hyper-acute injury setting as early as 6 hours after the
initial injury.P4% This result has been corroborated in multiple
mouse models where comparison of DTT indices to spinal cord
histopathology and to locomotor recovery demonstrate AD to
be an accurate predictor of the degree of intact white matter
and recovery of locomotion.*! Additionally, elevated ADC
values at the injury site have predicted improved postoperative
outcomes according to the Neurosurgical Cervical Spine
Scale.l Thus, both FA and ADC are sensitive markers of injury,
with ADC showing the greatest sensitivity.[*] Quantification of
intact fiber numbers in the spinal cord has proven as an effective
means for determining the extent of white matter tract damage,
while the effect appears more sensitive for motor rather than
sensory levels.’”! Additionally, both axial FA mapping and
tractography techniques have been used to detect asymmetric
cord damage in acute injury.[*!

Unlike in acute injury, chronic injury is characterized by
increased ADC, while still displaying a decreased FA.B!
As in acute injury, alterations in several DTI indices have
been observed in areas of spinal cord distant from the
injury epicenter.”’# These measures, including AD, have
demonstrated correlation with functional data in chronic
SCI patients, % suggesting that these data are potential
noninvasive injury indicators in the chronic injury setting as
well.?1 A unique feature of DTT s that it also detects significant
changes in regions of the spinal cord rostral and caudal to the
site of injury.[24748]
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Significant differences in FA and mean diffusivity (MD) between
injury severity groups were also detectable in brain corticospinal
tracts, the internal capsule, and pyramidal regions of the brainstem,
and these differences in the brain were correlated with the extent
of intact postinjury motor function.*”! DTT measurements have
been corroborated by electrophysiological data as well, suggesting
them to be a feasible indicator of neurological function. DTI from
the medial spinothalamic tracts and dorsal columns are associated
with early spinal somatosensory evoked potential (SEP) changes,
while measurements from the lateral spinothalamic tracts are
associated with late SEP changes.™ In addition, the ADC of rostral
white matter tracts correlates with locomotor recovery,*lwhile
the ADC of noninjured ventrolateral white matter tracts predicts
motor recovery.!l

Spinal Tumors

As is the case for brain tumors, the spatial and morphological
relationship between spinal cord tumors and adjacent white
matter tracts is closely related to predicting operative success,
and thus significantly impacts patient management and
prognosis. In the spinal cord, DTI tractography is able to
visualize white matter fiber displacement in the presence of
spinal cord lesions.”*¥ Table 3 provides an overview of human
studies evaluating DTT in spinal tumors.

In a glioma-grafted rat model, imaging was able to separate
tumor from host white and gray matter and also corresponded

Neurology India | Volume 65 | Issue 5 | September-October 2017
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Table 3: Human studies investigating DTI in spinal tumors

Author (year) Study design

Subjects (number)

Key results (P)

Ducreux et al. (2006) Prospective, cohort

Setzer et al. (2010)
Choudbhri et al. (2014)

Prospective, longitudinal ISCN (14)
Retrospective, ISCN (10)
cross-sectional

Liu et al. (2014) Prospective, cohort

Astrocytoma (5) vs ctrl (10)

ISCN (12) vs TLL (13)

| FA at lesion

FT defined tumor borders

FT predicted lesion resectability (<0.003)
FT predicted lesion resectability

| FA and 1 ADC at ISCN lesion vs TLL (<0.05)

ctrl = Control; FT = Fiber tractography; ISCN = Intramedullary spinal cord neoplasm; TLL = Tumor-like lesion; SA = Spinal astrocytoma; ADC = Apparent diffusion

coefficient

with conventional histopathology.® Surgical outcomes
have demonstrated the predictive value of tractography
in determining the resectability of intramedullary spinal
cord tumors preoperatively in adults, with a significant
concordance between DTI-based predictions and actual surgical
evaluation.™ This result is reproducible for intramedullary
neoplasms in the pediatric patient population as well, where
DTI positively identified fiber splaying and displacement
associated with resectable tumor margins.>!

Conventional MRI is often unable to sufficiently differentiate
between ependymomas and astrocytomas in the spinal
cord. DTI tractography, however, is able to delineate the
fiber displacement associated with ependymomas versus
the fiber infiltration associated with astrocytomas. %!
Additionally, delineating intramedullary tumors from
nonneoplastic, tumor-like lesions (TLL) is a dilemma while
using the conventional MRI. By using DTI, these tumors can
be distinguished based on a decreased FA and an increased
ADC in tumors from TLL.®! Diffusion indices of cord tumors
suggest that both increased FA and ADC are present in tumors
of greater mass,”* although these indices have yet to be related
to tumor histology. While tractography has demonstrated
the ability to visualize white matter fibers in relation to solid
tumors, it has a greater difficulty with cystic tumors where
significant vasogenic edema impairs the accurate measurement
of water diffusion.*

Cervical Spondylotic Myelopathy

Conventional MRI remains the gold standard imaging modality
for evaluating cord compression in CSM. However, it has
several shortcomings including an inability to consistently
characterize the extent of neuronal injury or functional status in
patients,*®!l or to offer prognostic value for recovery following
surgical decompression.[®? The spinal cord often appears
normal on MRI at the early stages of CSM,®* which may delay
intervention and subsequent recovery.[*’ Here, DT represents a
promising solution to overcome the limitations imposed by the
the conventional MRI, when performed alone. Table 4 provides
an overview of human studies evaluating DTI in CSM.

Numerous studies have reported a decreased FA and an
increased ADC in CSM,*71 with FA changes showing
especially strong effect size at the upper cervical levels.
104681 While these changes are most prominent at the
maximum compression level (MCL),” the authors have also
successfully identified the segmental level of dysfunction
in single- and multi-level compression,”™ even against the
normal changes in FA and ADC that occur with age.l*”]
Notably, DTT indices are detectable before the appearance
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of T2-weighted hyperintensity on MRL®! with FA changes
becoming detectable earliest”! and prior to the onset of
symptoms.”* These findings have been compared with
functional electrophysiological data and abnormal sensory
evoked potentials (SEPs), and were found to correspond
with a decrease in FA cephalad to the MCL."®!

Several other indices have also been investigated to detect
cord compression in CSM. MD has been observed to
be significantly increased at the MCL,"””7% and displays
promising sensitivity and specificity (100% and 75%,
respectively).””l Additionally, an increase in root mean
square displacement and a decrease in mean diffusional
kurtosis are able to identify and estimate cord compression
at an early clinical stage and generally exhibit greater
change from baseline than increases in ADC or decreases
in FA."I DTI may be able to describe CSM pathology with
greater precision than structural MRI. At the MCL, decreases
in FA have been successfully localized to the dorsal and
lateral columns, 767881 while minimal changes were noted in
ventral columns.” MD values were not only significantly
increased at the MCL, but were specifically localized to
dorsal regions-of-interest.”® Here, DTI has made it possible
to demonstrate region-specific alterations in CSM.

Anindividual’s tolerance of and response to cord compression is
variable, and the interpretation of MRI findings may be unclear,
owing to a poor association between the detectable degree of
cord compression and symptom manifestation.®! Decreased
FA and increased ADC at the MCL were more pronounced in
symptomatic versus asymptomatic patients, thus discriminating
these clinical subgroups.”2%2%3 FA changes also correlate with
baseline myelopathy scores, including the Japanese Orthopedic
Association (JOA) and Nurick scales.! % Reduced field-of-view
DTI has demonstrated promisingly strong correlation with
clinical severity and JOA scores as well.®*! Delineation among
clinical subgroups may also be possible using ADC values,
which appear to significantly differ between moderately versus
severely affected groups, and again correlate strongly with
clinical symptoms.®! With respect to morphological evidence
of cord compression severity, DTI accurately computes
space-available-for-cord,”*? estimates white matter fiber
damage,® identifies pathological spinal cord levels,”™ and
even detects microstructural changes before significant cord
compression is present.”?

Preoperative DTI also shows promise for predicting outcomes
following surgical decompression, thus aiding surgical
decision-making. Tractography patterns, specifically intact
versus disrupted fiber bundles, while not associated with
the severity of symptoms, predict postoperative neurological

985
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Table 4: Human studies investigating DTI in cervical spondylotic myelopathy

Author (year)

Study design

Subjects (number)

Key results (P)

Demir et al. (2003)

Mamata et al. (2005)
Budzik et al. (2011)

Kara et al. (2011)
Lee et al. (2011)
Song et al. (2011)

Hori et al. (2012)
Kerkovsky et al. (2012)
Lindberg et al. (2012)
Nakamura et al. (2012)
Gao et al. (2013)
Jones et al. (2013)

Uda et al. (2013)

Banaszek et al. (2014)
Ellingson et al. (2014)

Li et al. (2014)
Rajasekaran et al. (2014)
Wen et al. (2014)

Wen et al. (2014)

Ahmadli et al. (2015)
Cui et al. (2015)

Guan et al. (2015)
Maki et al. (2015)

Prospective, cohort

Prospective, longitudinal
Prospective, cohort

Prospective, longitudinal
Prospective, cohort

Prospective, longitudinal

Prospective, cohort

Prospective, longitudinal
Prospective, cohort

Meta-analysis
Prospective, cohort

CSM (36) vs ctrl (8)

CSM (79) vs ctrl (11)
CSM (20) vs ctrl (15)

CSM (16)
CSM (20) vs ctrl (20)
CSM (53) vs ctrl (20)

vs ctrl (13)
vs ctrl (10)

CSM (26) vs ctrl (30)

CSM
CSM
CSM
CSM
CSM
CSM

132) vs ctrl (25)
48) vs ctrl (9)
14) vs ctrl (14
35) vs ctrl (40
15) vs ctrl (25
45) vs ctrl (20

AAAAAA
- = = =
== = =

CSM (18)
CSM (23) vs ctrl (20)

CSM (479) vs ctrl (278)
CSM (20) vs ctrl (10)

| FA at MCL (=0.007)

FA and MD have higher SN, but lower SP, than T2W

| FA and 1 MD within T2W hyper-intensity (<0.05)

| FA at MCL (=0.0003)

FA correlated with UE (<0.001) and LE (<0.001) scores

| FA among T2W hyper-intensity negative cases (<0.001)
| FA (=0.001) andtMD (=0.001) at MCL

| FA (<0.01) andtMD (<0.01) at MCL, | FA at descending
cervical levels (<0.01)

| FA (=0.006), | MK (=0.002), and 1 RMSD (=0.006) at MCL
| FA for myelopathic (=0.001) and nonmyelopathic (=0.04)
| FA (=0.02) and 1 RD (=0.03) at MCL

FT ratio correlated with recovery rate (=0.0006)

FA correlated with JOA score (<0.05)

FA correlated with JOA (<0.01) and Nurick (=0.01) scores
FA predicted postoperative NDI improvement (=0.04)

FA had ROC AUC=76 (SN=95%, SP=50%)

MD had ROC AUC=0.90 (SN=100%, SP=75%)

| FA (<0.0001) and 1 MD (<0.01) throughout cord

FA correlated with JOA (<0.0001)

FA correlated with symptomatic level

| FA'and 1 MD at MCL (<0.01)

| FA (<0.05) and 1 MD (<0.05) in LCST

| FA at MCL (=0.02)

FA correlated with JOA recovery ratio (=0.03)

| FA among T2W hyper-intensity negative cases

| FA'in LCST and PC (<0.001)

1 MD, 1 AD, and 1 RD throughout cord (<0.05)

| FA (<0.001) and 1t ADC (<0.001) at MCL

| FA'in LCST (<0.01) and PC (=0.01)

Wang et al. (2015)
Chen et al. (2016)

Murphy et al. (2016)
Rajasekaran et al. (2016) Prospective, longitudinal
Suetomi et al. (2016)
Toktas et al. (2016)

(14)
CSM (35)
(10)

Prospective, longitudinal CSM (21)

CSM (4) vs ctrl (5)
CSM (10) vs ctrl (10)

14) vs ctrl (7)

Retrospective, cross-sectional CSM (10) vs ctrl (11)

FA correlated with JOA in LCST and PC (=0.03)
| FA (=0.05) and 1 MD (=0.014) at MCL in LCST and PC

| FA (=0.002) and 1 ADC (<0.001) at MCL |FA (=0.003)
andtADC (<0.001) at lumbosacral enlargement

FA correlated with 9-PT and 30-MWT

ADC (<0.001) correlated with postoperative recovery

FA and ADC correlated with segmental level dysfunction
| FA (<0.001) and 1 FA (<0.001) in stenotic segments

30MWT = 30-meter walking time; 9-PT = 9-hole peg test; ctrl = Control; FT = Fiber tractography; LCST = Lateral corticospinal tract; LE = lower extremity;
MCL = Maximum compression level, MK = Mean kurtosis; PC = Posterior column; ROC AUC = Receiver operating characteristic area under the curve;
RMSD = Root mean squared displacement; SN = Sensitivity; SP = Specificity; T2W = T2-weighted MRI; UE = Upper extremity; FA = Fractional anisotropy;
MD = Mean diffusivity; ADC = Apparent diffusion coefficient; JOA = Japanese Orthopedic Association; RD = Radial diffusivity

improvement.'* Tractography can also be used to compute a
fiber tract (FT) ratio, representing the proportion of intact fibers
at the MCL versus the C2level. Poor postoperative neurological
recovery was expected for a preoperative FT ratio <60%,
especially among patients with significant symptoms.[845°
In contrast, no such differences in functional recovery were
observed in patients with high versus low signal intensity on
the preoperative MRL®*I Additionally, postoperative MRI
results often suggest adequate cord decompression regardless
of the clinical outcome, but postoperative DTI results among
these patients were more varied. Specifically, changes in
postoperative ADC were observed in patients who showed
neurologic recovery, but no such changes were observed
in patients whose neurologic status worsened or remained
unchanged after surgery.!

986

Amyotrophic Lateral Sclerosis

Therapeutics development for ALS has been hindered by a
dearth of biomarkers sensitive to the spatial and temporal
patterns and progression of neurodegeneration. Much research
has been dedicated to investigating imaging measures in ALS
brains, but fewer studies have done so in the spinal cord.
Table 5 provides an overview of human studies evaluating
DTIin ALS.

The most robust finding has been that FA values are significantly
decreased in ALS compared to healthy controls,”*'! which
appears to be most pronounced between the C2-C5 levels.””
In SOD-1 ALS (Cu, Zn-superoxide dismutase-1 amyotropic
lateral sclerosis) model mice, this decrease in FA has been

Neurology India | Volume 65 | Issue 5 | September-October 2017
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Table 5: Human studies investigating DTI in amyotrophic lateral sclerosis (ALS)

Author (year) Study design

Subjects (number)

Key results (P)

Valsasina et al. (2007)
Agosta et al. (2009)
Nair et al. (2010)

Prospective, cohort

Cohen-Adad et al. (2013)

El Mendili et al. (2014)
Wang et al. (2014)
Iglesias et al. (2015)
Budrewicz et al. (2016)

Prospective, longitudinal
Prospective, cohort

ALS (29

ALS (28) vs ctrl (20)
ALS (17) vs ctrl (20)
ALS (14) vs ctrl (15)

ALS (29) vs ctrl (21)

)
ALS (24) vs ctrl (16)
ALS (21) vs ctrl (21)
ALS (15) vs ctrl (15)

| FA at lesion (=0.002) correlated with ALSFRS(<0.001)

| FA (=0.01) and 1 MD(=0.01) at lesion

| FA (=0.03) and 1 RD (=0.003) at lesion

FA correlated with EDSS recovery (=0.02)

FA (=0.02) and RD (=0.03) correlated with finger/foot tapping
RD and MD correlated with ALSFRS (=0.04) and FVC (=0.01)
| FA'in LCST (<0.0005)

FA correlated with ALSFRS (=0.04) and TMS threshold (=0.02)
FA in LCST correlated with ALSFRS (=0.001)

| FA (<0.01) and 1 MD (<0.05) in LCST

1 MD and 1 RD in PC (<0.05)

| FA'in right (=0.0037) and left (=0.015) PC

ALSFRS = ALS Functional Rating Scale; ctrl = Control; EDSS = Expanded Disability Status Scale; JOA = Japanese Orthopedic Association; score, LCST = Lateral
corticospinal tract; PC = Posterior column; TMS = Transcranial magnetic stimulation, motor threshold; FA = Fractional anisotropy; MD = Mean diffusivity;

RD = Radial diffusivity; FVC = Forced vital capacity

localized to the ventral white matter tracts, and is more
pronounced as the disease progresses.'" Electrophysiological
data also suggest an association between decreased FA values
and the presence of abnormal SEP recordings, a marker of
ALS disease severity.™ The degree of FA change has been
consistently correlated with disease severity, specifically in
ALS Functional Rating Scale (ALSFRS-R)®1%104 and finger
and foot tap scores.” The association between cord FA and
ALSFRS-R scores is strong, while the association between cord
FA and brain FA is only moderate.” Additionally, imaging
results in the brain generally correlate poorly with spinal cord
pathology and damage.” Taken together, these findings are
consistent with the hypothesis that spinal cord pathology in
ALSis independent of concomitant brain changes, and thus that
FA values are an useful adjunct to monitor ALS progression.

Other DTl indices are significantly changed in ALS spinal cords,
including decreases in ADCI'"™ and cross-sectional area,”**!and
increases in MDP® and radial diffusivity (RD),”® with changes
in RD correlating with several ALS severity markers such
as forced expiratory volume, finger and foot tap scores, and
ALSFRS-R scores.” In addition to motor fiber pathology,
previously unobservable, early-stage damage to sensory fibers
of the lateral and dorsal columns has been described in roughly
60% of ALS patients using DTL%!

Multiple Sclerosis

Table 6 provides an overview of human studies looking
at MS. Numerous studies have shown a decrease in FA at
spinal MS lesions.'" 1% These FA changes are notably present
in white matter tracts that appear normal on conventional
MRI,11U2I and are less prone to underestimate the size
of MS cord lesions."™ This decreased FA has demonstrated
promising functional correlates. For example, asymmetrically
decreased FA predicts differences in right- versus left-sided
slowing of conduction time."*! Additionally, the magnitude
of decrease in FA is greater in MS plaques than in normal
appearing white matter, which is then greater than in healthy
controls."115] With respect to clinical correlates, a decreased
FA value is associated with poorer results on the Expanded
Disability Status Scale (EDSS)!'7!'l and with greater severity
of fatigue, which has been shown to be related to the extent of
cord involvement.!"”!
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Other DTI metrics have also shown associations with cord
changes in MS including increased MD!"®17 and RD, %! along
with decreased ADCIM"3 and RD."? Increased MD and RD
values correlate with various clinical tests such as gait testing
and EDSS,'81 with a less increased RD being associated
with better clinical outcomes.' These indices were also able
to distinguish highly versus moderately disabled subgroups
of patients, further suggesting their utility as markers for
MS pathogenesis.?'! These results have been corroborated
in an induced dorsal column experimental autoimmune
encephalomyelitis model of inflammatory demyelination, a rat
model of MS,"where FA, AD, and RD were found to correlate
with axonal degeneration at the primary lesion site and in
adjacent areas of the spinal cord.['”! Notably, these changes
in DTT indices along with FA changes do not demonstrate
correlation with imaging results in the brain of MS patients,
suggesting cord pathology to be independent of concomitant
brain changes.['%>1%]

DTI may also have a role to play in evaluating therapeutic
options and tracking recovery for MS patients. After
steroid therapy, symptoms improvement could be tracked
as FA increased and RD decreased back toward baseline,
and a more robust response to steroid therapy could be
predicted in patients with initially greater FA and lower RD
values."®! Additionally, the extent and severity of white matter
damage after nataluzimab treatment could be tracked using
FA values as well.'¥

Conclusion

While the efficacy of DTI for mapping neuronal connectivity
in the brain has been well characterized, the utility of DTI
in the spinal cord remains an evolving and promising area
of investigation. Both region-of-interest-based DTI metrics
and DTI tractography have demonstrated numerous clinical
applications in the setting of spinal cord pathologies, including
early detection, surgical planning, outcome prediction,
pathologic subgroup differentiation, and monitoring disease
progression after treatment. Structural T1- and T2-weighted
MRI remains the first line modality for the evaluation of spinal
pathologies. A unique feature of DTI, however, appears to
be the ability to detect pathological states in the spinal cord
in situations where conventional MR images appear normal.
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Table 6: Human studies investigating DTI in multiple sclerosis (MS)

Author (year)

Study design

Subjects (number)

Key results (P)

Agosta et al. (2005)
Hesseltine et al. (2006)
Agosta et al. (2007)
Ciccarelli et al. (2007)
Ohgiya et al. (2007)
Cruz et al. (2009)

van Hecke et al. (2009)
Benedetti et al. (2010)

Freund et al. (2010)

Rocca et al. (2012)
Theaudin et al. (2012)

Miraldi et al. (2013)
Oh et al. (2013)

Raz et al. (2013)

von Meyerberg et al. (2013)

Toosy et al. (2014)

Hubbard et al. (2016)

Wiebenga et al. (2016)

Prospective, cohort

Prospective,
longitudinal

Prospective, cohort

Prospective,
longitudinal

Prospective, cohort

PPMS (24) vs ctrl (13)
RRMS (24) vs ctrl (24)
MS (42) vs ctrl (9)

MS (14) vs ctrl (13)
MS (21) vs ctrl (21)
RRMS (41) vs ctrl (37)
MS (21) vs ctrl (21)
MS (68) vs ctrl (18)
MS (14) vs ctrl (13)

MS (35) vs ctrl (20)
MS (16)

RRMS (32) vs ctrl (17)
MS (129) vs ctrl (14)

RRMS (19) vs ctrl (16)

MS (38) vs ctrl (28)

MS (1s4) vs ctrl (11)

MS (69)

| FA (=0.007) and t MD (=0.024) at lesion

| FA'in LCST (<0.0001) and PC (=0.001)

| FA (=0.01) and 1 MD (<0.001) at lesion

FA correlated with EDSS (=0.001)

| FA'in LCST (=0.02)

FA correlated with 9PT (<0.05)

| FA (<0.001) and 1 MD (<0.05) throughout cord
FA in plaques<NAWM-<ctrl (<0.01)

FA in plaques<NASC (<0.001) < ctrl (<0.05)

| FA at lesion (<0.01)

| FA (=0.001) and 1t MD (<0.001) at lesion

FA correlated with EDSS (=0.002)

| FA and 1 RD throughout cord (<0.05)

RD correlated with EDSS, 9PT, and TWT (<0.05)
| FA and 1 MD at lesion (<0.001)

FA (=0.04) and RD (=0.05) correlated with lesion size
and AIS improvements

| FA, 1 MD, and 1 RD at lesion

FA, MD, and RD correlated with EDSS (<0.05)
FA and RD correlated with vibration test (<0.05)
MD, AD, and RD correlated with hip flexion (<0.05)
| FA at lesion (=0.01)

FA in plaques<NASC (<0.0001)

MD in plagues>NASC (<0.0001)

FA and MD correlated with EDSS (<0.01)

| FA throughout cord (<0.001)

Tract-specific FA correlated with MEP (<0.01)

| FA and 1 RD at lesion (<0.001)

FA and RD correlated with EDSS (=0.05 and=0.01,
respectively) and TWT (=0.02 ad=0.05, respectively)

RD, AD, and MD correlated with gait testing (<0.05)
MD correlated with 6MW and TWT (<0.05)

RRMS, Tx nat (22) vs Tx ctrl (17) vs | FA with nataluzimab treatment (=0.02)

ctrl (12)

6MW = 6-minute walk; 9PT = 9-hole peg test; ASIA = American Spinal Injury Association; AIS = Impairment Score; EDSS = Expanded Disability Status Scale;
ctrl = Control ; LCST = lateral corticospinal tract; MEP = Motor evoked potential; NASC = Normal-appearing spinal cord; NAWM = Normal-appearing white matter;
PC = Posterior column; PPMS = Primary progressive multiple sclerosis; RRMS = Relapsing-remitting multiple sclerosis; Tx nat = Treatment with nataluzimab;
Tx ctrl = Treatment with control; TWT = Timed 25-foot walk test; FA: Fractional anisotropy; MD: Mean diffusivity; RD: Radial diffusivity; RRMS: Relapsing-remitting
multiple sclerosis; PPMS: Primary progressive multiple sclerosis

Taken together, the literature suggests that DTI may become a
robust, routine adjunct to conventional MRI for the evaluation
and management of patients suffering from spinal pathologies.
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