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A

The key contribution of this work is the successful application of a statistical localization
approach to the segmentation of neural fiber bundles in diffusion weighted magnetic
resonance imagery (DW-MRI). We show that by extending active surface segmentation
techniques to use locally sampled statistics, we can capture heterogeneous orientation
information along the fiber bundles.

M

Neural fiber bundles can curve significantly causing the orientation of tensors along the
bundle to vary along its length. Consider the differences in orientation in the Cingulum
Bundle.

Considering statistics in local regions simplifies this problem.

(a) Local Region (b) Local Interior (c) Local Exterior

In these regions, statistics of the fiber bundle and the surrounding structures are easily
separable. A segmentation can be driven by simple statistics such as the localized tensor
mean.

A S

I Compute normalized tensors so each has unit magnitude
I Compute a single medial anchor tract using a tractography technique by Melonakos et. al.
I Create an initial surface by dilating the medial tract
I Deform the initial surface iteratively to obtain the segmentation

L T S

To compute localized statistics, we use three functions. First, local regions along the edge of
the surface are selected with a ball function

B(x, y) =

{
1 ‖x − y‖ < r

0 otherwise.

Second, the smoothed Heavyside function

Hφ(x) =


1 φ(x) < −ε

0 φ(x) > ε
1
2{1 + φ

ε
+ 1

π
sin(

πφ(x)
ε

)} otherwise

selects the interior of the surface. Third, its derivative δφ(x) selects the interface. These are
combined using log-Euclidean tensor arithmetic to define local interior means, u(x) and local
exterior means, v(x)

u(x) = exp

(∫
Ωy

B(x, y) Hφ(y) log (T(y)) dy∫
Ωy

B(x, y) Hφ(y)dy

)

v(x) = exp

(∫
Ωy

B(x, y) (1 − Hφ(y)) log (T(y)) dy∫
Ωy

B(x, y) (1 − Hφ(y))dy

)
To evaluate the distances between log-Euclidean tensors and means computed in the
exponential space, we define

dLE[T1, T2] = ‖ log(T1) − log(T2)‖2

S LM  A S

To perform the segmentation, we begin by constructing an energy based on the localized
interior and exterior means.

E(φ)=

∫
Ωx

δφ(x)

∫
Ωy

B(x, y) F(T(y), φ(y)) dydx + λ

∫
Ωx

δφ(x)‖∇φ(x)‖dx

F(T, φ) = Hφ(y) dLE[T(y), u(x)] + (1 − Hφ(y)) dLE[T(y), v(x)]

Next, we minimize this energy by iteratively evolving an active surface segmentation in 3D.
Using localized statistics allows the surface to adapt to the changing orientations along the
fiber bundles.

Active surfaces also make use of intrinsic smoothness properties to prevent leaks and keep
the segmentation reasonable.

E I: S E
I Validation on data with known truth values
I Curved structure (similar to fiber bundles)
I Structure and background share global statistics
I Correct segmentation is achieved.

(a) Initialization on Synthetic (b) Final Result on Synthetic (c) Final Result on Synthetic

E II: C B
I Cingulum Bundle (CB) curves along the length
I Forms “ring-like belt” along corpus callosum
I Useful for diagnosis of depression and schizophrenia
I Parameters: r = 7mm based on anatomical knowledge

(a) Initialization of Left CB (b) Final Result of Left CB (View 1) (c) Final Result of Left CB (View 2)

(d) Initialization of both CBs (e) Final Result of both CBs (View 1) (f) Final Result of both CBs (View 2)

We plan to extend this work by applying the technique to more fiber bundles and using more
sophisticated tensor statistics.
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