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As it provides the only method for mapping white matter fibers in vivo, diffusion MRI tractography is gaining
importance in clinical and neuroscience research. However, despite the increasing availability of different
diffusion models and tractography algorithms, it remains unclear how to select the optimal fiber
reconstruction method, given certain imaging parameters. Consequently, it is of utmost importance to have
a quantitative comparison of these models and algorithms and a deeper understanding of the corresponding
strengths and weaknesses. In this work, we use a common dataset with known ground truth and a
reproducible methodology to quantitatively evaluate the performance of various diffusion models and
tractography algorithms. To examine a wide range of methods, the dataset, but not the ground truth, was
released to the public for evaluation in a contest, the “Fiber Cup”. 10 fiber reconstruction methods were
evaluated. The results provide evidence that: 1. For high SNR datasets, diffusion models such as (fiber)
orientation distribution functions correctly model the underlying fiber distribution and can be used in
conjunction with streamline tractography, and 2. For medium or low SNR datasets, a prior on the spatial
smoothness of either the diffusion model or the fibers is recommended for correct modelling of the fiber
distribution and proper tractography results. The phantom dataset, the ground truth fibers, the evaluation
methodology and the results obtained so far will remain publicly available on: http://www.lnao.fr/spip.php?
rubrique79 to serve as a comparison basis for existing or new tractography methods. New results can be
submitted to fibercup09@gmail.com and updates will be published on the webpage.
, INRIA Saclay Île-de-France,
e, France.
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Introduction

The unique ability of diffusion weighted MRI (DW-MRI) based fiber
tractography tomap, in vivo, the architecture of white matter pathways
has ignited strong interest in clinical and neuroscience research.
Applications include improved assessment of a range of neurological
and psychiatric disorders (Ciccarelli et al., 2008) and characterization of
anatomical connections (Johansen-Berg and Rushworth, 2009). The
potential of tractography to help map anatomical connections played a
significant role in motivating an ambitious project to map the human
“connectome”.1

Despite the increasing availability of different diffusion models and
tractography algorithms, it remains unclear how to select the optimal
fiber reconstruction method, given certain imaging parameters.
Notably, one objective of these methods is to model and track in the
anconnectomeproject.org.
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presence of complex fiber configurations such as crossings or kissings,
but an objective comparison of their performance has yet to be made.
Consequently, it is of upmost importance to have a quantitative
comparisonof thesemodels andalgorithmsandadeeper understanding
of the corresponding strengths andweaknesses. To emphasize the need
for such comparative study, we briefly review the diffusion models and
tractography algorithms available in the literature.

The role of the diffusionmodel is to characterize the underlying fiber
distribution at each voxel, indicating the number and orientation of
distinct fiber compartments, and many choices are available. The most
commonly used diffusion model is the diffusion tensor (DT) (Basser et
al., 1994) as estimated from diffusion tensor imaging (DTI). DTI is
popular due to the simplicity of themodel andof the imaging acquisition,
which requires as few as six diffusion weighted images (DWI) and is
compatible with clinical conditions. However, the DT can only
characterize one fiber compartment per voxel — a problem in regions
of crossing fiberswhere at least two are expected. Consequently, several
alternatives have been proposed to overcome this limitation. Most of
them are based on high angular resolution diffusion imaging (HARDI)
(Tuch, 2002), which uses several tens to a few hundreds of DWI. An
incomplete list includes the Q-ball model (Tuch, 2004), the composite
hindered and restricted model of diffusion (CHARMED) (Assaf and
Basser, 2005), the diffusion orientation transform (DOT) (Özarslan et al.,
2006), multi-tensor distributions (Tuch, 2002; Liu et al., 2004), the
orientationdistribution function (ODF) (Tuch, 2004), thefiberODFusing
spherical deconvolution (SD) (Tournier et al., 2004, 2007; Descoteaux et
al., 2009), the ball and stickmodel (Behrens et al., 2003), themixtures of
Wisharts (Jian and Vemuri, 2007), and the persistent angular structure
MRI (PAS-MRI) (Jansons and Alexander, 2003).

A large number of tractography algorithms have been developed
to map fibers through the entire brain based on information from the
voxel-level diffusion models. The algorithms can be categorized into
two main classes: deterministic and probabilistic. Deterministic
algorithms follow the main fiber directions as revealed by the
diffusion model and generate sequences of points that are considered
as fibers. Probabilistic algorithms repeat the deterministic version
many times by randomly perturbing the main fiber directions each
time, and produce maps of connectivity. Such maps indicate the
probability that a given voxel is connected to a reference position. A
small sampling of tractography algorithms indicates the dizzying
array of choices. Among deterministic tractography algorithms,
streamline algorithms were developed first (Mori et al., 1999b;
Conturo et al., 1999; Basser et al., 2000), followed by more elaborated
tensor deflection algorithms (Weinstein et al., 1999; Lazar et al., 2003)
or more global approaches (Poupon et al., 2001; Mangin et al., 2002).
This list is not exhaustive and many other DT-based algorithms exist.
HARDI-based techniques include the generalization of streamline
tracking to use ODFs computed from diffusion spectrum imaging
(Tuch, 2002; Hagmann et al., 2004), multi-tensor tracking (Kreher
et al., 2005; Bergmann et al., 2007), the q-ball tracking (Chao et al.,
2007b), and ODF tracking (Campbell et al., 2006; Descoteaux et al.,
2009). Probabilistic tractography methods include DT-based algo-
rithms (Parker et al., 2003; Behrens et al., 2003; Lazar and Alexander,
2005; Friman et al., 2006; Ramirez-Manzanares and Rivera, 2006;
Savadjiev et al., 2008; Koch et al., 2002; Zhang et al., 2009), calculation
of geodesics in a DT-warped space (Lenglet, 2006; Jbabdi et al., 2004),
and numerous HARDI-based methods (Parker and Alexander, 2005;
Perrin et al., 2005; Seunarine et al., 2006; Behrens et al., 2007; Jbabdi
et al., 2007; Savadjiev et al., 2008; Chao et al., 2007a; Seunarine et al.,
2007; Haroon and Parker, 2007; Kaden et al., 2007; Jeurissen et al.,
2011). Once again, this list is not exhaustive.

The increasing number of diffusion models and tractography
algorithms is both a blessing and a curse: while each diffusion model
has the ability of modeling more complex diffusivity and each
tractography algorithm has the capability of obtaining previously
undetectedfiber tracts, it is becoming obscure to decidewhich diffusion
model in conjunction to which tractography algorithm should be used
for a particular application. More important, the performance of each
method may vary and one cannot ensure that the reconstructed fibers
are effectively representative of the true fiber organization, or if they are
artifacts produced by the method.

Lack of publicly available ground truth for validation makes it
difficult to objectively choose among the huge variety of diffusion
models, tractography algorithms, and combinations thereof. A
number of validation studies have been performed, but each has its
drawbacks. Campbell et al. (2006) used two rat spinal cords to create a
biological phantom. Unfortunatly, compared with the brain the fiber
configuration was sparse. Other synthetic phantoms were proposed,
for instance by Perrin et al. (2005) (two bundles crossing at 90°), and
Pullens et al. (2010), or by Moussavi et al. (2011) (two thick spherical
bundles crossing at either 45 or 90°). However, all of them lack the
complex crossing and kissing fibers found in the brain. Recently,
Fieremans et al. (2008) proposed the design of a realistic diffusion MR
phantom made of complex structures similar to the white matter
geometry such as fiber crossings and curved fibers, which is
challenging for tractography algorithms. Heat-shrinking tubes were
used to pack and compress fibers to increase anisotropy. Complex 3D
geometries can therefore be designed. Furthermore, Pullens et al.
(2010) showed that fiber density and orientation could be controlled
using such design strategy. Nevertheless, the proposed phantoms
exhibit only simple crossings, although having a rather realistic 3D
geometry. In addition, attempts at validating diffusion MRI with
histological data have been presented by Leergaard et al. (2010) and
Anderson et al. (2006). However, they are difficult to reproduce for
non-experts in histology and only address validation of diffusion
models at the voxel level, not larger scale tractography. Identically,
using neuronal tracers as done by Dauguet et al. (2007) is hardly
generalizable to a large number of fiber bundles. By contrast,
numerical simulations as in (Hall and Alexander, 2009) have well-
defined ground truths at the price of anoversimplification of thephysics
of diffusion in tissues. Moreover, they often discard acquisition artifacts
(such as noise and distortion), which are important parameters to take
into account in practice.

The objectives of this study are to provide a qualitative and
quantitative comparison of several tractographymethods on the same
realistic dataset with known ground truth and to freely distribute this
dataset along with the evaluation methodology so that new methods
can be easily evaluated and compared to existing ones. We therefore
constructed a realistic diffusion MR phantom containing numerous
crossing, kissing, splitting and bending configurations that we
purposely developed to this end (Poupon et al., 2010). To compare
as many different approaches as possible, we organized a tractography
contest, the Fiber Cup, during the Medical Image Computing and
Computer Assisted Intervention (MICCAI) conference in London in
September 2009. Common datasets with known ground truth were
distributed publicly and researchers were invited to apply their
tractography methodologies to these datasets. Contestants were
blinded to the ground truth. Results were analyzed and ranked based
on several metrics. The contest format addresses several difficulties
associated with comparing diffusion model and tractography methods.
A huge number of methods have been published, and quite a few
software implementations have been made publicly available for
comparison. A list of the most popular diffusion MRI processing
software packages includes FSL (Behrens et al., 2007), Trackvis (Wang
et al., 2007), Camino (Cook et al., 2006), 3D Slicer (Pieper et al., 2006),
Brainvisa (Rivière et al., 2009), MedINRIA (Toussaint et al., 2007),
ExploreDTI (Leemans et al., 2009) and MRtrix (Tournier et al., 2007).
While a single-site comparison similar to that performed by Klein et al.
(2009) for registration algorithms is feasible, we opted for the reverse
situation in order to obtain asmany contributions as possible, including
some of themost recent algorithms whose implementation may not be
available in a public package yet. Moreover, unlike Klein et al. who



2 We define SNR as the ratio between the signal magnitude and the noise power
(i.e., standard deviation) (Kaufman et al., 1989). We used voxels in the center of the
phantom branches (see Fig. 1) to estimate the signal magnitude, and voxels outside
the phantom to estimate the noise power. Note that the SNR of the DWI was averaged
over all gradients.
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evaluated registration packages out-of-the-box without fine parameter
tuning, we preferred to extract the best from each method for a fair
evaluation. It means that the expertise of an algorithm's author was
required to run it properly.

The rest of the paper is organized as follows. In the Materials and
methods section, we present the ground-truth dataset specifically
designed for the contest followed by the evaluation methodology. In
the Results section, we review the results by summarizing the 10
received contributions before detailing their qualitative and quanti-
tative evaluation. Finally, in the Discussion section we discuss about
the pros and cons of each method and give some recommendations.

Materials and methods

In this section, we will first briefly review the construction of a
realistic diffusion MR ground truth dataset. We will then detail the
rules of the tractography competition and the methodology devel-
oped to quantitatively evaluate and compare contributions.

Construction of a ground truth dataset

Design of a realistic diffusion MR phantom
The construction of diffusion phantoms is a challenging task

involving the following two steps (Poupon et al., 2008):

• Design of a realistic and practically feasible fiber configuration.
• Mechanical conception: construction of a frame and container to
hold the fibers under high tension in water. An adequate recipe to
fill the container with a MRI compatible solution is also required.

In what follows, we depict those two steps that lead to the
elaboration of our realistic diffusion MR phantom.

Fiber configuration. First, the desired fiber configuration must be
designed. The configuration should be as realistic possible — contain-
ing crossing and kissing fibers as well as bundles of different
curvatures. However, the configuration must be practically feasible.
In particular, fibers lie in-plane because they have to be squeezed in
between two solid dies to ensure high density and diffusion
anisotropy approaching that of tissue (Poupon et al., 2008).
Consequently, complex 3D configurations are not permitted. More-
over, bundles are stretchedwhile being squeezed to ensure fibers take
a straight, smooth, trajectory within the phantom. Therefore, the
bundles enter and leave the phantom, forbidding closed trajectories.

We opted for a configuration simulating a coronal section of the
human brain, containing several fiber crossing and kissing configura-
tions with different curvatures (see Fig. 1 left). The phantom
comprises seven distinct bundles, and contains 3 crossings, 1 kissing,
and 3 bundles that split. For a fast text referencing, those regions were
numbered from 1 to 7 on Fig. 1 right. Several curvatures were also
used. In particular, a U-shape bundle (Fig. 1 right, region 7) with high
curvature was placed to challenge methods with a strong prior on the
straightness of the bundles to achieve a perfect score: methods
assuming very straight fibers are likely to fail in reconstructing this U-
shape structure.

Mechanical conception and manufacturing. To create large bundles,
hydrophobic acrylic fibers whose diameter is of the same order as the
diameter of myelinated axons were used (20 μm). Those fibers are
very common and can be found in any specialized clothing shops
under the name “acrylic fibers for Boutis and Patchwork”. Polyure-
thane negative and positive prints of the target bundles were
manufactured and used to strongly tighten the fibers together. The
diameter of the polyurethane device is of 14 cm. The phantom was
filled to ensure that the same amount of fibers is found everywhere,
including in the crossings. Fibers were carefully positioned such that
they rigorously follow the pathways sketched in Fig. 1. Bundles of
about 100 fibers were used to progressively fill it. First, a layer of
bundles was placed everywhere in the phantom. Then, a second layer
was placed everywhere except at the intersections. Without this
operation, intersections would have contained twice or three times
more fibers than the branches, depending on how many bundles are
crossing. Finally, this process was reiterated until the desired number
of fibers was positioned.

The next step consists in compressing the fibers to increase their
density. Compression is carefully controlled to make sure that fibers are
captured in 1 mm2 cross-section everywhere throughout the phantom.
Practically, the positive and negative prints were squeezedwhile keeping
the fibers strongly tightened until the openings (i.e., where the fibers
enter/leave the phantom) are exactly 1 cm thick. As they are distributed
all over thephantom,weassume that the level of compression is the same
everywhere. Since we know the number of fibers and the space they are
captured in, we can deduce the density of fibers, which was close to
1900 fibers/mm2 everywhere, including in the crossings.

A cylindrical container compatible with MRI head coil antennas was
designed to hold the phantom in themagnet. This containerwasmade up
of a plexiglass cylinder ended at its extremities by two plastic caps,
equipped with taps to fill it. As standard DW-MRI uses the ultra-fast
echoplanar acquisition scheme that is extremely sensitive to phase
inhomogeneities, developing a filling process insuring the absence of any
air bubbles in the container is of upmost importance. To do so, a dedicated
platform was designed that enables a preliminary degassing of the
solution, and a filling under vacuum conditions. An ultrasound beam is
finally used to destroy any remaining air bubbles. The containerwasfilled
using pure distilled water without any contrast agent.

Diffusion-weighted MRI acquisitions
Diffusion-weighted data of the phantom were acquired on the 3 T

Tim Trio MRI systems of the NeuroSpin centre, equipped with a whole
body gradient coil (40 mT/m, 200 T/m/s), and using a 12-channel
receive only head coil, in combination with the whole body transmit
coil of the MRI system.

A single-shot diffusion-weighted twice refocused spin echo
echoplanar pulse sequence was used to perform the acquisitions,
while compensating for the first order Eddy currents. Two datasets
were acquired at two different spatial resolutions: 3 mm isotropic and
6 mm isotropic.

Parameters for the 3 mm isotropic acquisition were as follows: field
of view FOV=19.2 cm, matrix 64×64, slice thickness TH=3mm, read
bandwidth RBW=1775 Hz/pixel, partial Fourier factor 6/8, parallel
reduction factor GRAPPA=2, repetition time TR=5 s, 2 repetitions.
Three diffusion sensitizations at b-values b=650/1500/2000 s/mm2

corresponding to the echo times TE=77/94/102 ms respectively were
used. 3 slices were acquired. A SNR of 15.8 was measured for the
baseline (b=0) image. SNR of DWI at b-values 650/1500/2000 were
evaluated at respectively 9.1/2.6/1.1.2 ADC and FA values of the 3×3×3
acquisition are reported in Fig. 2 for the three b-values.

Parameters for the 6 mm isotropic acquisition were as follows:
field of view FOV=38.4 cm, matrix 64×64, slice thickness
TH=6 mm, read bandwidth RBW=1775 Hz/pixel, partial Fourier
factor 6/8, parallel reduction factor GRAPPA=2, repetition time
TR=5 s, 1 repetition. Three diffusion sensitization's at b-values
b=650/1500/2650 s/mm2 corresponding to the echo times TE=77/
94/110 ms respectively were used. 1 slice was acquired. A SNR of 22.6



Fig. 1. Sketch of the phantom that mimics a coronal section of the human brain. Left: Fiber pathways are highlighted in colors. Arrows indicate the directions of the synthetic fiber
bundles. Right: The various crossing, splitting and kissing fiber configurations are numbered for a fast text referencing. Note that angles between crossing fibers were carefully
determined, although not used during evaluation.

223P. Fillard et al. / NeuroImage 56 (2011) 220–234
was measured for the baseline (b=0) image. SNR of DWI at b-values
650/1500/2650 were evaluated at respectively 18.9/17.6/4.5. ADC and
FA values of the 6×6×6 acquisition are reported in Fig. 3 for the three
b-values.

The diffusion sensitizationwas applied along a set of 64 orientations
uniformly distributed over the sphere. Note that b-values were chosen
Fig. 2. ADC and FA images of the 3×3×3 phantom dataset. Top: The middle slice of the ADC
mean (standard deviation) of the ADC values of the phantom. Bottom: The middle slice of th
the mean (standard deviation) of the FA values of the phantom.
such that phantom ADC compares to brain ADC at b-values of
respectively 2000, 4000 and 6000 s/mm2.

Estimation of a ground truth dataset
To facilitate the evaluation of the different results submitted during

the contest, we chose to restrict the analysis to a set of 16fibers traversing
image is shown for the three b-values used for acquisition. The values reported are the
e FA image is shown for the three b-values used for acquisition. The values reported are

image of Fig.�1


Fig. 3. ADC and FA images of the 6×6×6 phantom dataset. Top: The single slice of the ADC image is shown for the three b-values used for acquisition. The values reported are the
mean (standard deviation) of the ADC values of the phantom. Bottom: The single slice of the FA image is shown for the three b-values used for acquisition. The values reported are the
mean (standard deviation) of the FA values of the phantom.
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16 manually identified voxels, or seeds. Those 16 spatial positions were
chosen to ensure that a singlefiber bundle passes througheach of them to
avoid ambiguity on the result and to facilitate the evaluation. Indeed,
receiving multiple fibers per seed would have been cumbersome: the
exact number of bundles crossing in a voxel is a prioriunknown(we recall
that the ground truthwas not revealed to competitors). Comparison of an
undetermined number of fibers to the ground truth, whose number of
bundles per voxel is precisely known, is non-trivial. Consequently, we
chose to define seeds in voxels where a unique fiber bundle is expected.
Competitors were asked to return a single representative fiber of the
bundle traversing each seed voxel. The 16 chosen seeds are shown in
Fig. 4. They were labeled from S1 to S16. Only S9 is ambiguous since two
solutions are possible, but this ambiguity was detected soon after the
contest started and could not be removed.

For each seed, an estimate of the fiber bundle traversing it was
manually drawn on top of the 3×3×3 mm b0 image by following the
internal fibrous structure that was put in place during the phantom
elaboration. Then, lines were smoothed using approximating cubic
b-spline to remove any sampling noise, and fibers were resampled
using 1000 uniformly distributed points, which formed the ground
truth (Fig. 4c). Ground truth for the 6×6×6 mmdataset was obtained
by first registering affinely the 3×3×3 mm b0 image onto the 6×6×6
b0 image, and second by applying the obtained affine matrix to the
previously defined fiber coordinates (Fig. 4d).

Obviously, the nature of the ground truth itself prevents the inclusion
of probabilistic tractography algorithms into the evaluation panel, since
those output generally connectivity maps (CM) and not fiber pathways.
Intuitively, defining a ground truth for such a class of algorithm is still
possible given the fact that we know the fiber density at every position of
the phantom: if we assume thatwatermolecules diffuse less in regions of
high fiber density (where diffusion space is reduced), we could define
ground truth connectivity maps for every seed. However, this simplistic
view does not fully reflect reality. First, there is no evidence that water
molecules diffuse proportionally to fiber density: physics need to be
carefully investigated (software phantoms simulating the physics of
diffusion could shed light on this). Second, several other factors may
impact diffusion, such as inhomogeneities of fiber density, fiber diameter
or tissuepermeability. For these reasons,wechose toexcludeprobabilistic
tractography algorithms from the evaluation.

Contest rules

Participants were free to use any combination of tools and algorithms
that lead to the best result. DWI pre-processing was allowed. Any
combination of diffusion models and tractography algorithms was
permitted. The only restriction was that themethod should be automatic
and reproducible. Obviously, manual drawing of the fibers was not
allowed.

Participants had only access to the raw DWI datasets. We recall
that 6 datasets were available: three b-values at the 3 mm isotropic
resolution, and three b-values at the 6 mm isotropic resolution.
Participants were free to use any, or several, of these datasets. The 64
diffusion gradients used during acquisition were provided as a text
file. The 16 seeds were also available for both 3 mm and 6 mm
datasets as an image of region of interests, where the grey value of a
voxel indicates its label (label 0 identified the background).

A unique representative fiber of the bundle traversing each seed
was required. Each fiber had to come in a separate file namedwith the
seed label it originates. Thus, comparison with the ground truth was
easy as the file name directly points to the corresponding ground
truth fiber. This design favors deterministic tracking algorithms and
this issue will be discussed later in the conclusions.

An agreement on a coordinate system for expressing fiber
coordinates had to be made. Moreover, the choice of a common fiber

image of Fig.�3


Fig. 4. The 16 seed voxels chosen for the contest. Top: Seeds defined on the 3×3×3 mm (a) and 6×6×6 mm (b) datasets. Bottom: Ground truth fibers for both datasets. For each
figure, the b0 image is shown.
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file formathad to be done. Furthermore,fiber sampling can greatly differ
from one participant to another and could impact the evaluation. In the
following, we detail the solutions we deployed to solve those technical
yet crucial issues for a fair evaluation of the contest results.

Common fiber file format
Due to the increasing availability of tractography software

packages (DtiStudio, Brainvisa, TrackVis, MedINRIA, and Slicer to
quote just a few), and due to the existence of numerous fiber file
formats, one could not reasonably rely on one of them,mainly because
they can be quite complex to produce, especially for thosewho are not
familiar with them. Instead, we chose to rely on the simplest existing
format: the text file. Participants were asked to return a single text file
per fiber, where the fiber coordinates are listed in sequential order
(i.e., x y z coordinates of the first point, x y z coordinates of the second
point, etc.), one point per line. Thus, the number of lines corresponds
exactly to the number of points of a fiber.

Coordinate system
We imposed the results to be expressed in physical coordinates.

The transformation matrix from voxel to physical coordinates was
included in the DWI headers (in nifti file format), and was provided to
participants as such:

x
y
z

0
@

1
A=

−3 0 0
0 −3 0
0 0 3

2
4

3
5 ×

i
j
k

0
@

1
A +

93
93

−1:5

2
4

3
5;
for the 3×3×3 mm and:

x
y
z

0
@

1
A=

−6 0 0
0 −6 0
0 0 6

2
4

3
5 ×

i
j
k

0
@

1
A +

186
186
3

2
4

3
5;

for the 6×6×6 mm. (x,y,z) are real-world coordinates and (i, j,k) are
voxel coordinates.

Pre-processing
Another important issue to take care ofwhen evaluating tractography

results from different participants is the fiber sampling. The sampling is
very likely to differ from one submission to another: some methods
produce highly sampled fibers with several hundreds or thousands of
points, while others only provide a dozen of points. To normalize this,
fibers were parametrized by interpolating cubic b-splines. Interpolation
was chosen in order not to alter the fiber coordinates as returned by the
participants. Finally, a uniformsamplingof a1000pointmatching theone
used for the ground truth was performed for every fiber.

In the next section, we present the evaluation methodology used
to compare tractography results with the ground truth.

Evaluation methodology

Evaluation was performed on a per-fiber basis. We recall that each
participant had to return a dataset composed of 16 candidate fibers
matching 16 ground truth fibers. Thus, the candidate fiber passing

image of Fig.�4
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through seed point N can be compared to the ground truth fiber going
through the same seed. Consequently, the evaluation methodology
narrows down to the evaluation of differences between pairs of
curves.

In the following, we describe the evaluation measures of curve
matching we used for this contest. In particular, we show how to
compute scores that evaluate not only the spatial matching of the
curves, but also compare their trajectories and smoothness.

Generic score of fiber match
The optimal result is realized when the candidate fiber perfectly

matches the ground truth, i.e., when both fibers are superimposed.
Thus, we chose to rely on the point-based Root Mean Square Error
(RMSE) between the candidate fiber and the corresponding ground
truth:

RMSE f1; f2ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫1

0
dist2 f1 sð Þ; f2 c sð Þð Þð Þds

r
; ð1Þ

where f1 and f2 are the two fibers being compared (we recall that fibers
are parametrizedwithb-splines so they can be expressed as functions of
their arc length), s thearc length in the range [0,1], c a function giving for
each arc length s of f1 the corresponding arc length of f2, and dist ametric
measuring how similar the points f1(s) and f2(c(s)) are.

The RMSE relies on a correspondence function c which is
responsible for providing the arc length of fiber f2 which corresponds
to arc length s on fiber f1. The choice of c is obviously not unique, and
without any prior knowledge there is no best choice for it. Without
any prior on point correspondences, we chose to associate fiber points
which are the closest spatially, similarly to the work of (Fillard et al.,
2007) on sulcal lines. Consequently, we search for the correspondence
function c such that:

c = min
c

∫1

0∥ f1 sð Þ−f2 c sð Þð Þ∥2ds:

Practically, c is obtained as follows. A distancematrix is built where
each line gives the distance from a point of the first fiber to every
sample points of the second. Then, following (Fillard et al., 2007),
dynamic programming is used to determine the path of minimal cost
within this distance matrix, which gives us the final correspondences
between the arc length of both fibers. This procedure ensures that the
function c is monotonically increasing, i.e., if s1N=s2,c(s1)N=c(s2),
which ensures that two consecutive points of a fiber are associated to
two other consecutive points.

Nonetheless, themapping c is not guaranteed to be symmetric, i.e., if
we denote by c1 (resp. c2) the mapping such that f1(s) (resp. f2(s))
corresponds to f2(c1(s)) (resp. f1(c2(s))), nothing ensures that c2=c1

−1.
The consequence is that the RMSE of Eq. (1) is not symmetric:
RMSE f1 sð Þ; f2 sð Þð Þ≠RMSE f2 sð Þ; f1 sð Þð Þ. As there is no real justification
for this asymmetry, we chose to define a symmetrized version of the
RMSE, denoted by sRMSE (for symmetric Root Mean Square Error), as
the average between RMSE f1; f2ð Þ and RMSE f2; f1ð Þ:

sRMSE f1; f2ð Þ sð Þ = 1
2

RMSE f1 sð Þ; f2 sð Þð Þ + RMSE f2 sð Þ; f1 sð Þð Þ½ �

Finally, Eq. (1) can be reformulated into a symmetric version:

sRMSE f1; f2ð Þ = 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫1

0
dist2 f1 sð Þ; f2 c1 sð Þð Þð Þds

r
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∫1

0
dist2 f2 sð Þ; f1 c2 sð Þð Þð Þds

r !

ð2Þ

The sRMSE depends on the chosen metric dist. For instance, taking
the L2 norm for dist will result in high (resp. low) values when fibers
are distant from (resp. close to) each other. On the contrary, by taking
the angular difference between tangents, the sRMSEwill be low (resp.
high) when fibers are parallel (resp. orthogonal). Thus, by changing
the metric, it is possible to evaluate how curves match not only in
terms of spatial positions but also trajectories and shape. In the
following, we express three metrics that were used for the contest:
the spatial metric, the tangent metric and the curve metric.

The contest metrics

The spatial metric. The spatial metric is simply the L2 norm between
two corresponding fiber positions. If we denote by p1 and p2 two
spatial positions, one can express it as:

dist p1;p2ð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∥ p2−p1∥2

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2−p1ð Þ⊤ p2−p1ð Þ

q
: ð3Þ

The sRMSE endowed with the spatial metric is expressed in mm
and ranges from 0 (overlapping points) to infinity.

The tangent metric. Let υ1= f ′1(s)/∥ f ′1(s)∥ (resp. υ2= f ′2(s)/∥ f ′2(s)∥). υ1
and υ2 are normalized tangent vectors to fiber points. We define the
tangent metric as:

dist υ1;υ2ð Þ = jacos jυ⊤
1υ2 j

� �180
π j ð4Þ

The sRMSE endowed with the tangent metric is expressed in
degrees and varies from 0° (parallel fibers) to 90° (orthogonal fibers).

The curve metric. The curvature at any position of a curve is given by:
κ fð Þ = ∥ f′ × f″∥

∥ f′∥3 . The curve metric is expressed as the absolute

difference of the curvature between two fiber points:

dist κ1; κ2ð Þ = jκ2−κ1j ð5Þ

The sRMSE endowed with the curve metric is expressed in mm−1

and ranges from 0 to infinity.
Note that the b-spline representation of the fibers gives us an

analytical expression of the first and second order derivatives
necessary to evaluate the three metrics.

In the next section, we present the results of the qualitative and
quantitative evaluation of the 10 contributions received during the
Fiber Cup.

Results

A total of 9 individual submissions were received, including one
with 2 results, making a total of 10 tractography results. Results were
analyzed following the methodology described in the previous
section. Computation of quantitative metrics was performed on a
regular PC (Intel Core 2 Duo, 2 Gb of memory).

For the sake of completeness, we also included the result of the
probabilistic tractography algorithm implemented in FSL (Behrens
et al., 2007), as this is one of most widely used algorithm within the
neuroscience community. While probabilistic tractography does not
comply with the requirements of our quantitative evaluation
methodology, its qualitative evaluation can still inform its capabilities
to infer the correct fiber bundles given a seed region. Moreover, it
shows that the phantom dataset can be used to evaluate probabilistic
tractography algorithms. Results are presented in the Supplementary
Section 1.

In this section, we first summarize the 10 contributions in terms of
diffusionmodel and tractography algorithm chosen. Second, we give a
qualitative overview of the results before presenting their in-depth
quantitative analysis.
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Summary of contributions

An overview of the 10 tractography methods evaluated during the
contest is given in Table 1. Practical details for results reproducibility
are given in the Supplementary Section 2. Even with a rather low
number of contributions, we obtained a good sampling of the various
diffusion model and tractography algorithms available in the
literature. More precisely, the choice of the diffusion model appeared
as more important than the tractography algorithm itself, often
reduced to a streamline approach, although some variety can be
noted.

One remark is that all participants except number 2 chose the
3 mm dataset. The choice of the higher resolution/reduced SNR
dataset is interesting since a common problem in real acquisitions is
to know how much of the SNR should be sacrificed in favor of the
spatial resolution. A b-value of 1500 was preferably chosen, very
probably to mimic the real-case scenario where a b-value of about
1000 is often used.

The rules of the contest imposed to return a single fiber per voxel.
Some participants had to post-process their tractography results that
produce in general multiple fibers per voxel. Interesting post-processing
wasused to this end, fromselectionof the longestfiber toamoreelaborate
clusteringmethod.While this was not expected, post-processing appears
as necessary to improve the raw result of tractography algorithms.

In the next section, we present a qualitative review of the 10
contributions.
Table 1
Overview of the 10 contributions. Details about the diffusion model, tractography method
(resp. FOD) parameterized with spherical harmonics. MoG stands for mixture of Gaussian.

Id Diffusion model Tractography Dataset Remarks

1 1- or 2-DT Streamline with propagation
direction following tensor with
eigenvector the closest to the
current direction

3×3×3,
b=1500

The 2-tensor mo
tensor in voxels
compartment is
the smallest.

2 FOD-SH Streamline with propagation direction
following the FOD peak closest to
previous direction

6×6×6,
b=2650

An anisotropic de
step is used befor
non-negativity co
FOD to be positiv

3 Single-DT Streamline with propagation
direction following tensor principal
direction of diffusion (PDD)

3×3×3,
b=1500

A Runge–Kutta 4
was used.

4 Single-DT Tensor deflection: propagation
direction follows direction resulting
of the product between the current
tensor and the previous direction

3×3×3,
b=1500

Tensors are powe
increase anisotrop
scheme was used

5 2-DT Streamline tractography with filtered
estimation of propagation direction

3×3×3,
b=1500

The diffusion mod
by the previous p
using unscented K

6 PAS-MRI Streamline with propagation
direction following the PAS peak
closest to previous direction
(PAS amplitude was calculated
on 181 points over the sphere)

3×3×3,
b=1500

PAS was calculate
(Sakaie, 2009). Tr
the Fact algorithm
implemented in (
2007) from all ph
fibers going throu
each seed, the lon
the candidate fibe

7 MoG Global tractography 3×3×3,
b=2000

Every point and d
parameter of the
single isotropic G

8 Single-DT Streamline with propagation direction
following tensor PDD

3×3×3,
b=1500

Tracking is perfo
voxels and only
were kept. Spati
performed to ret

9 FOD-SH Streamline with propagation
direction following the FOD peak
closest to previous direction

3×3×3,
b=1500

Tracking is perfor
voxels and only fi

kept. A scoring fu
most likely fiber t
fiber/seed.

10 ODF-SH Streamline with propagation
direction following the FOD peak
closest to previous direction

3×3×3,
b=1500

A positivity const
regularity are use
to make it more r
Qualitative evaluation

We present on Fig. 5 an overlap of the 10 contributions for each
ground truth fiber (one image corresponding to one seed location),
and on Fig. 6 the individual results for each contribution (one image
corresponds to the 16 candidate fibers of one method). Note that the
image number does correspond to the method Id of Table 1. The first
striking finding concerns the inter-method variability, which is
relatively high depending on the seed location. It raises the fact that
choosing one method or another can lead to completely different
tracking results, and strengthen the importance of such a comparative
study to determine the optimal possibilities.

From Fig. 5, we can conclude that, except for S13 and S14 that are
located on the isolated U-shape structure (Region 7, Fig. 1 right), at
least one contribution per seed fails at reconstructing the correct
pathway. Very often the algorithm chose the wrong direction when
going through crossing regions.

Seeds where only one contribution was mislead are S1, S3, S4 and
S8. All contributions seem remarkably stable with those seeds. The
most successful reconstructed fibers include those passing through
S1, S3, and S4. Those fibers were somewhat easier to reconstruct as
the exact pathway traverses a single crossing region. Note that S2 also
contains a single crossing but was less successful due to the fact that
the seed was purposely located at the boundary of the phantom, thus
leading to partial voluming effect, specially when reaching crossing
area 1 (Fig. 1 right) where three contributions chose the wrong
and chosen dataset are given for each method. ODF-SH (resp. FOD-SH) stands for ODF
Details for method reproducibility are given in Supplementary Section 2.
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Fig. 5. Panel of images showing the reconstructed fiber of all contributions passing through each seed selected for the context. The name below the image indicates the seed fibers
originate (a color-method correspondence table is given below). Such overview allows to understand the variability of the results: some seeds (such as S3 and S4) were more
successful than others (such as S7) to be reconstructed.
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branch. S8 was also very successful, as the seed was close to the
boundary and trackingalgorithmswere able to correctly follow the large
U-shape structure, successfully passing branching 5 and 6 (Fig. 1 right).
Among the less successful reconstructed fibers, we denote S5, S6,
S7, S11, S12, S15 and S16: those had at least two crossing regions to
traverse and many contributions were confused by one or the other.

image of Fig.�5


Fig. 6. Each of the 10 contributions is shown individually. Image (11) represents the ground truth for visual comparison. Fibers are colored by the seed they originate (see Fig. 4 for
more information on the seeds location). Visually, methods 2 and 7 seem to perform the best. We refer the reader to Table 1 for the method — Id correspondence.
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Looking at the individual results presented on Fig. 6 permits a
more comprehensive inspection of the performance of each contri-
bution. Visually, methods 2 and 7 seem to achieve the best
reconstructions (we refer the reader to Table 1 for the Id–method
correspondence). Method 10 is performing well, while fibers look
very tortuous. In such situation, we expect the spatial metric to give
a good score but the tangent and curve metrics to point this
phenomenon out. Methods 1, 5, 6, and 9, although missing a few
crossings, are performing reasonably well. Method 8 has fiber
disruption in the central crossing area which is not a desirable
feature. Besides crossings, most fibers appear as nicely reconstructed.
Finally, methods 3 and 4 appear to be mislead in almost all crossings,
although exhibiting smoother, and consequently more realistic, fibers
than most of the other methods.

In the following, we present the quantitative evaluation of each of
the 10 contributions.

image of Fig.�6
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Quantitative evaluation

The symmetric RMSE of the Evaluation methodology section was
evaluated for each of the three metrics and each of the 16 fibers of
each method, which makes a total of: 3×16×10=480 sRMSE
evaluated. One sRMSE comprises the evaluation of a metric on two
times 1000 points, we end up with a total of 960,000 point-to-point
metrics being tested. Results for the spatial, tangent and curve metrics
are given on Fig. 7.

The quantitative evaluation confirms our qualitative review of the
results. Fig. 7 presents results of the quantitative evaluation for the
spatial, tangent and curve metrics. The colder the color in the metric
figures, the better the performance of the algorithm. For the three
metrics, methods 2 and 7 seem to outperform the others. For the
Fig. 7. Quantitative comparison of the 10 contributions to the ground truth using the spatia
Eq. (5) (right). Top: The metric scores for each method and each fiber. Units are in mm for
Bottom: Points attributed to each method. Color-coding is the following: dark blue: 0 point,
each method and each metric is indicated below the x-axis.
spatial metrics, methods 1, 5, 9 and 10 performwell: fibers are indeed
spatially very close to the ground truth, but some high values were
detected for fibers where the tracking was mislead in a crossing
region. This is the case, for instance, for S7 where all methods except
M2 and M7 have chosen the wrong pathway (see Fig. 5 (7)).

The tangentmetric evaluates whether the fiber trajectory correctly
follows the ground truth. Parallel fibers obtain a very good score for
this metric. By contrast, fibers that chose the wrong pathway within a
crossing will be highly penalized since the trajectory is very likely to
become orthogonal to the correct one. Results presented on Fig. 7
middle confirms this: method 2 realizes an almost perfect score since
this is the only method which was able to correctly reconstruct all
crossings. Method 7 got only mislead in S12 as shown on Fig. 6 (7).
Then,methods 5, 8 and 9 also exhibit perfect reconstructions for about
l metric of Eq. (3) (left), the tangent metric of Eq. (4) (middle), and the curve metric of
the spatial metric, in degree for the tangent metric and in mm−1 for the curve metric.
light blue: 1 point, yellow: 2 points, and brown: 3 points. The total number of points for

image of Fig.�7
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half of the seeds. Methods 1, 3, 4 and 10 which produced noisier fibers
than the others were penalized by this metric.

The curvemetric of Fig. 7 right penalizes fibers with high curvature
since the ground truth contains only straight – or low-curved – fibers.
It is a good indicator of the veracity of the result since fibers with high
curvature are very unlikely to appear in real situations. Moreover,
during phantom elaboration synthetic fibers were strongly stretched
preventing high curvature. Methods 2, 4, 5, 6 and 7 produced the
fibers with the lowest curvature. Note that method 2 obtains bad
scores for S3 and S14. Indeed, from Fig. 6 (3), one can notice that S3
has a non-smooth trajectory around branching 2 (Fig. 1 right) that
appears like an inflection point. S14 has a maximum curvature at the
far-right point of the U-shape structure (region 7, Fig. 1 right), which
has been detected by the metric. Other methods, in particular method
10, are penalized by this metric due to the high frequency noise of
their fibers. Note that the curve metric is not redundant with the
tangent metric. For instance, method 4 received bad results for the
tangent metric since fibers were obviously wrong, but good results for
the curve metric since fibers were as smooth as the ground truth.

Ranking

Tractography results were ranked according to the following rule.
For each fiber and eachmetric, the method realizing the best score (i.e.,
the lowest metric value) was attributed 3 points. The second method
received 2 points, and the third 1 point. The other methods obtained 0
point. The purpose of such point attribution is to give to each
contribution a final and unique score to rank them. Obviously,
improvements are possible since one may not desire to give the same
importance to all metrics. However, this has the advantage to allow a
simple comparison of the performance of different methods. Table 2
presents thefinal ranking of the submissions received for the contest. To
further illustrate the performance of the tested algorithms in real
situations, we performed tractography on a brain dataset with the top
two methods (methods 7 and 2) and compared them to a single-DT
streamline tractography algorithm (method 4). Results are presented in
Supplementary Section 3.

Discussion

Comments on the methods

As expected, single tensor-based methods (Fig. 5 (3), (4) and (8))
seem to performworse than others in crossing regions for the obvious
reason that a single tensor is unable to correctly characterize the
two-fiber compartment specific of those regions. In particular, in the
lower crossing area (region 1, Fig. 1 right) methods 3 (Basser et al.,
2000) and 4 (Lazar et al., 2003) chose to avoid it by contouring it,
while method 8 (Fillard et al., 2003) stopped the tracking, very
Table 2
Final score ranking of the 10 contributions. See Table 1 for more information about each
method.

Rank Method Score

1st Method 7: Global tractography 116 pts
2nd Method 2: FOD-SH with constrained spherical deconvolution and

streamline tractography
87 pts

3rd Method 5: Combined 2-DT model estimation and
streamline tractography

31 pts

4th Method 10: ODF-SH with positivity and regularity constraints and
streamline tractography

19 pts

5th Method 6: PAS-MRI and streamline tractography 16 pts
6th Method 1: Adaptive 1 or 2-DT model and streamline tractography 5 pts
6th Method 8: Single-DT and streamline tractography 5 pts
6th Method 9: FOD-SH with streamline tractography 5 pts
9th Method 4: Single-DT with tensor deflection 4 pts
10th Method3:Single-DTwithstreamline tractographyandRK4 integration 0 pt
probably because the crossing yield a fiber curvature greater than the
allowed maximum angular deviation.

Multi-tensor based approaches (Fig. 5 (1) and (5)) are clearly a big
improvement compared to single-tensormethods.Multi-tensormodels
canbe expressed asaweighted sumof single tensorswith the sumof the
weights equal to one, each weight being proportional to the contribu-
tion of each tensorwithin a given voxel.However, those twoapproaches
greatly differ. Method 1 (Fig. 5 (1)) (Ramirez-Manzanares et al., 2007)
uses a mixture of single- and 2-tensor models. The 2-tensor is dropped
at theprofit of the single onewhen it is either detected as a single tensor,
or when one of the tensor has a much larger importance than the other
(i.e., the weight of one tensor is larger than twice the weight of the
second). Indeed, in voxels with a single fiber bundle contribution, the
single diffusion tensor model is often more reliable at evaluating the
fiber direction. Then, a streamline tractography is used where the next
propagation direction is chosen as the closest to the previous direction
among all available candidate directions given the single or 2-tensor
model.

Method 5 (Fig. 5 (5)) (Malcolm et al., 2010) elegantly combines
the estimation of a 2-tensor model with tractography. Starting from a
seed point, each fiber is traced by following the tensorwhose Principal
Direction of Diffusion (PDD) is the closest to the previous direction.
However, instead of using least-squares to fit the tensor parameters
directly, this method uses filtered estimation given the results of
previous positions along the fiber. Specifically, it employs an
unscented Kalman filter to provide a robust estimate of the highly
nonlinear 2-tensor model, and of the mean and covariance of both
tensor parameters. This produces a causal estimate of the local
structure at each point along the fiber. Nevertheless, the streamline
tractography algorithm used is the bottleneck of the method as errors
may accumulate during the reconstruction, which may eventually
lead to erroneous pathways.

A fast persistent angular structure calculation (Sakaie, 2009) was
used in conjunction with a simple FACT tractography algorithm for
method 6 (Fig. 5 (6)) on the 3 mmdatasetwith a b-value of 1500. Fibers
were smooth, as indicated by good results of the curvemetric, but some
crossings weremissed (regions 1, 4 and 5 of Fig. 1 right) leading to high
values for the spatial and tangent metrics. Results were not improved
when using the more extensive persistent angular structure calculation
as implementedbyCamino (Cook et al., 2006).Wecan conclude that the
high angular resolution and noise immunity of the persistent angular
structure are not sufficient to compensate for shortcomings of simple
streamline tractography in the presence of complex fiber geometries.

ODF- (Fig. 5 (10)) and FOD- (ODF with spherical deconvolution)
based (Fig. 5 (2) and (9)) methods qualitatively give a good match
with the ground truth. However, method 10 (Fig. 5 (10)) (Goh et al.,
2009) produced a very irregular and tortuous result. This is very likely
to be caused by curve averaging as in a former submission
competitors returned several fibers per seed which was not compliant
with our requirements (a revised submission was then resent).
Method 10 estimates the ODF using a probability density constraint
and a spatial regularity prior (Goh et al., 2009a). The constraint
enforces the ODF to be positive, while the spatial prior ensures the
resulting field to be spatially smooth, and the method is consequently
robust to noise. Streamline tractography was then performed with a
simple first order integration scheme and by detecting ODF maxima
by thresholding over the sphere. In the revised submission, the final
curve for each seed is obtained by first computing all the possible
fibers obtained from the ODF fields estimated from each repetition as
well as the mean Riemannian ODF field, as described in (Goh et al.,
2009b), and then discretizing the path that contains the most number
of likely fibers. Such a tractography technique is noise-sensitive and at
the same time, highly dependent on accurate ODF estimation. In spite
of this limitation, the fact that only one fiber, going through S6, failed
to cross region 3 (see Fig. 1 right), proves that the ODF estimation
succeeded.
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Method 9 (Fig. 5 (9)) estimates the FOD using the spherical
deconvolution of (Descoteaux et al., 2009) with the constrained
regularization of (Tournier et al., 2007). While this method gives an
acceptable qualitative match with the ground truth, it failed in
reconstructing crossing region 4 (Fig. 1 right), and missed a couple of
fibers in crossing region 1. Apparently, this method is noise-sensitive
and the streamline tracking used is mislead by erroneous FOD
maxima, especially in crossing region 4 that exhibits a crossing with a
low angular difference. Those regions require a diffusionmodel with a
good angular resolution. At the level of SNR of the chosen dataset, the
ODF with spherical deconvolution was unable to correctly model this
configuration.

Method 2 (Fig. 5 (2)) (Jeurissen et al., 2009, 2011) presents very
smooth fibers. This is also the only method which chose to use the
6×6×6 mm dataset instead of the 3×3×3 mm version. Apparently,
the gain of SNR turned into a larger fiber regularity. Note also that all
fibers take the correct pathway (no error in crossing or bending
regions). Method 2 implements the constrained spherical deconvolu-
tion of Tournier et al. (2007), giving an estimate of the FOD.
Tractography was then conducted using a simple streamline approach
based on an extraction of the FOD maxima using a Newton
optimization, which tends to prove, given the quality of the results,
that the combination of spatially-adaptive DWI denoising before
sharp FOD estimation and maxima extraction is a good choice of
processing steps. Indeed, the gain in SNR with the 6 mm dataset,
further increased with the denoising, seems to overcome the
decreased precision of the fiber spatial positions induced by the
diminished resolution. We may argue that SNR plays a key role in
diffusion model estimation and should not always be sacrificed at the
profit of spatial resolution.

Method 7 (Fig. 5 (7)) (Reisert et al., 2009), which used global
tractography, realized the best scores for all metrics and was declared
the winner of the contest. Global tractography is a class of
tractography algorithms that can be seen as greedy algorithms:
instead of reconstructing tracts one by one, those algorithms
reconstruct all fibers at the same time (Mangin et al., 2002; Kreher
et al., 2008; Fillard et al., 2009). More precisely, in global tractography
each segment of a fiber (i.e., an oriented point) is a parameter to be
optimized. Optimization is performed such that each segment tries to
associate with neighboring segments to form longer chains of low
curvature while modelling the diffusion weighted data at best. Each
fiber segment contributes as a single isotropic Gaussian model, which
eventually results in a mixture of Gaussian in each voxel. Those
methods are a lot more time-consuming than their deterministic
counterparts but seem to be well-adapted in real, noisy situations.
Recommendations

Although this evaluation is subject to some limitations (which are
discussed in the next section), it is still possible to make a few
recommendations about methods which should be used and those
which should be avoided in tractography. The recommendations that
follow are based on the tested implementations of each method.
Other implementations could have led to different conclusions.
Moreover, there is no guarantee that the results obtained on the
phantom dataset can be directly transposed to real situations. While
MR phantoms are undoubtedly a step towards the validation of
diffusion MRI tractography, they should be complemented by other
sources of known fiber pathways such as post-mortem data.

First, in the context of tractography, the single-tensor model
should be used with extra-caution since tractography algorithms are
very likely to fail in reconstructing crossing fibers. However, the
single-DT model is still able to correctly characterize numerous fiber
bundles as shown in the real experiment of Supplementary Section 3.
Notably, the DT model with only few degrees of freedom is by essence
less sensitive to noise than more complex models, which often makes
it the unique alternative in clinical applications.

Second, in case of good quality datasets, the best option seems to
use a fiber orientation distribution function in conjunction with a
streamline tractography algorithm where the next direction of
propagation is directly inferred from the FOD maxima. Indeed, with
reasonable SNR datasets, FODs seem successful in modelling the fiber
directions within a voxel and can be trusted.

Finally, for datasets of medium and low quality as it is often
encountered in real situations, several options are possible but all of
them are using a spatial prior to make the model estimation more
robust to noise. For instance, method 5 constraints the estimation of a
2-tensor model by the previous fiber direction, which gives some
spatial regularity to the whole procedure. Method 10 explicitly
imposes a spatial regularity when estimating the ODF, which
eventually leads to good fiber pathways even using a streamline
tractography algorithm, which give some evidence that the fiber
directions were correctly modeled by the ODF. The global tracto-
graphy of method 7 also uses a smoothness prior during fiber
reconstruction (fiber segments associate to form chains of low
curvature). Additional spatially adaptive smoothing of the DWI is
also beneficial, as shown by method 2. Conversely, without spatial
prior, not any diffusion model was shown to correctly estimate the
different fiber contributions within a voxel, and consequently should
be used with extreme caution.

Limitations and future work

One of the caveats of the proposed quantitative evaluation
methodology is that it only applies to deterministic tractography
algorithms. Probabilistic methods produce maps of 'connectivity', that
give, at every voxel of a regular 3D grid, the probability of this voxel to
be connected to a reference position. A ground truth is more difficult
to establish as intrinsic factors such as fiber density inhomogeneities,
fiber diameter or tissue permeability may impact the motion of water
molecules. Thus, elaboration of a ground truth dataset for probabilistic
tractography requires careful investigation andwas out of scope of the
present work. The purpose of this work is to give evidence that
reconstructed pathways are correctly representing the true fiber
organization, which is crucial for many applications like neurosurgery
planning.

Furthermore, the synthetic phantom does not properly simulate
the physiology of the diffusion phenomenon as in living tissues.
Indeed, only extra-cellular diffusion is simulated since no water
molecules diffuse within synthetic fibers (diffusion only occurs
around). A side effect is that the values of the fractional anisotropy
within the fiber bundles are lower than those generally observed in
brain white matter, which tends to disadvantage tensor-based
methods. However, methods based on diffusion models like ODF
with spherical deconvolution appears to be less sensitive to this
diminished anisotropy and perform well at separating the various
bundle contributions, making the overall evaluation method still
valid.

In addition, we would like to recall that the results presented here
rely on a blind contest: competitors did not have access to the ground
truth and were not authorized to modify their results after the ground
truth was revealed. Consequently, results may be sub-optimal, as fine
parameter tuning could have improved tractography accuracy. Now
that the ground truth is revealed, it is possible that the ranking of the
methods would be different if the analysis were to be repeated.
Furthermore, this study was performed on a single dataset. Therefore,
the recommendations we make are purely indications and should not
be considered as established truth. It is only by repeating this type of
analysis on different datasets, and by analyzing the consistency of the
results, that we will be able to conclude about the superiority of one
model/tractography algorithm compared to another.
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In the future, new evaluation criteria will be proposed. Notably,
some characteristics of the phantom were left unexploited. For
instance, it is possible to evaluate the angular differences between
crossing bundles and compare these values to the ground truth (see
Fig. 1). Another possibility is to evaluate whether the boundaries of a
bundle are correctly reconstructed by measuring the spatial distance
in-between two tracts delimiting the bundle. Finally, adding new
seeds to the evaluation would allow a rapid extension of the current
work.

To conclude, we want to emphasize that, to the best of our
knowledge, this is the first quantitative evaluation of multiple
tractography methods on a common dataset with known ground
truth. We believe that such a common dataset along with the
methodology proposed here can serve as an evaluation basis for
existing and new algorithms. To this end, the DWI, the ground truth
fibers, the evaluationmethodology and the results obtained so far will
remain freely available on a permanent website: http://www.lnao.fr/
spip.php?rubrique79. New results can be submitted for evaluation by
emailing them to fibercup09@gmail.com. Results will be ranked and
published among others on the Fiber Cup website.
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