Challenges of graph cut segmentation
- Objects may have weak edges
- Surrounding clutter similar to object
- Occlusion

Existing shape-based approaches
- Limited shape variation
- Single fixed shape prone to misalignment
- Computationally intensive

Our contribution
- Incorporation of highly variable nonlinear shape priors into existing iterative graph cut methods

Overview

Efficient global energy minimization:
\[
E(A) = \sum_{p \in \mathcal{P}} R_p(a_p) + \lambda \sum_{(p,q) \in \mathcal{N}} B_{(p,q)}
\]
where \(A = \{ a_p : a \in \{0, 1\}, p \in \mathcal{P}\} \).
- Regional data term \(R(a_p) \) and boundary smoothness term \(B_{(p,q)} \)
- Typically, region term taken to be the negative log-likelihood of a pixel's fit into the histogram:
 \[
 R_p(O) = -\ln P(\mathcal{O}_p) \quad R_p(B) = -\ln P(\mathcal{B}_p)
 \]
yet this assumes a uniform prior.
- Often produces undesired segmentations
 - May not capture weak edges
 - May leak out of object of interest
 - Unable to capture occluded regions

Existing iterative graph cut methods
yet this assumes a uniform prior.

Kernel PCA
- Form statistical model of training set
- Model captures modes of variation via principle component analysis (PCA)
- Use nonlinear kernel function for inner product distances when determining modes of variation:
 \[
 k(x_i, x_j) = \exp \left(-\frac{\|x_i - x_j\|^2}{2\sigma^2} \right)
 \]
- For arbitrary \(x \), the pre-image \(\hat{x} \) is the closest point to \(x \) respecting the model. Can be approximated as a linear combination of training shapes weighted by distance:
 \[
 \hat{x} = \sum \frac{d(x_i, x_j)}{\sum d(x_i, x_j)}
 \]

New regional terms
- Non-uniform priors formed from pre-image
 - Priors incorporated into regional term in Bayesian manner:
 \[
 R_p(O) = -\ln P(\mathcal{O}_p|O_p) - \mu \ln P(\mathcal{O}_p) \\
 R_p(B) = -\ln P(\mathcal{B}_p|B_p) - \mu \ln P(\mathcal{B}_p)
 \]

Proposed algorithm
1. Compute histograms for intensity priors \(P(\mathcal{O}_p) \) and \(P(\mathcal{B}_p) \).
2. Compute pre-image \(\hat{x} \) and form shape priors \(P(\mathcal{O}) \) and \(P(\mathcal{B}) \).
3. Calculate edge weights \(R(a_p) \) and \(B_{(p,q)} \).
4. Graph cut segmentation
5. Repeat until convergence

Results
User initialization, segmentation without shape, segmentation with proposed shape (left to right):