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Abstract

Quantum computers promise to solve many problems considered prac-
tically impossible using today’s classical computers. However, in con-
structing such devices, errors are introduced into the system as the un-
stable subatomic components interact with their environment. Careful
encoding of quantum data protects against such errors.
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1 Introduction

Computers have revolutionized society. This much is obvious. They are every-
where from controlling traffic signals to controlling nuclear reactors. They help
us compose email and run the stock market. They calculate explosive forces in
video games and satellite trajectories. However, there are still many problems
just beyond the reach of feasible computation.

One such problem that is difficult on classical computers is simulating quan-
tum systems where the dimensionality of such systems is enormous compared
to classical systems. The state of a classical n-bit system has dimension n and
size 2™; however, a quantum n-qubit system already has dimension 2™ because
of complex interactions between quantum states. Simulation of such quantum
systems with all these state interactions is largely intractable [4]. If such a sys-
tem is so hard for us to model on computers, how does Nature seem to do it so
easily? This led noted physicist Richard Feynman in 1982 to conjecture that a
computer using quantum mechanical processes for computation might be more
efficient at such simulations.

A distant possibility in 1982, physical realizations of such quantum computa-
tions are now reported every year. However, major hurdles still lay on the path.
One of the largest is that of errors creeping into computations: quantum sys-
tems are extremely sensitive to their environment. Suppose each computation
on a quantum computer introduced some € of error, then after N computations,
the chance of producing an error free result is (1 —¢)" which gets exponentially
worse with each further computation.

Digital computers are free from such problems. After each computation, the
state is reset to either 0 or 1 and so any small error is corrected. However,
a similar problem of error arises in the use of unreliable media. For example,
radio transmission in a thunderstorm or reading a scratched compact disc. For
these and other such systems, robust encoding schemes have been developed to
correct for such errors.

In this report we will briefly cover the development of classical error cor-
recting codes defining several concepts that will lead us to the development
of analogous techniques for quantum systems. Included is a survey of several
advanced codes and discussion of future directions for fault tolerant quantum
computation.

2 Quantum Channels: Properties And Implica-
tions

2.1 Quantum noise, entanglement, and decoherence

Quantum computers are much more sensitive than their classical counterparts,
and so errors arise as they interact with their environment while performing
computations. While robust advances are announced every year, it is unlikely
quantum computers will reach the reliability of classical computers. As such,



methods are needed to reliably represent data during storage, computation, and
transmission.

2.2 The bottom line

Three problems present themselves when designing quantum codes [7].

e We are unable to replicate an arbitrary state as per the No-Cloning The-
orem, hence we cannot simply use replicating an arbitrary qubit to then
send. We can however deterministically spread the information contained
in some arbitrary state over a larger state space.

e There is a continuum of possible states and hence a continuum of possible
errors, and so it is not so simple as detecting which error occurred as some
errors could have occurred to greater or lesser extent. Care must be taken
in designing a finite set of corrective operations to account for the infinite
number of possible errors.

e Directly measurement of qubit states destroys quantum information. While
classical coding theory may examine the state of the system and then
choose appropriate corrections, quantum coding must be more careful in
determining the character of error present. We must measure the error,
not the stored information.

3 Classical Coding Theory In Brief

3.1 Linear codes

Classical coding theory arose out of the need to communicate data in the pres-
ence of noise. Following the pattern of most texts, we consider a unit of data
to be a bit, that is, an element of the set B = {0, 1}, and so all arithmetic is
modulo two, i.e. 0+0=1+1=0and 0+ 1 =140 = 1. In this scenario, it is
convenient to think of arithmetic as simply bitwise XOR.

A common approach begins by grouping data into uniformly sized blocks of
bits. Suppose we wish to encode k bits using n bits where k < n. We denote
such a scheme as an [n, k] code. In other words, we have a pool of codewords C
of size 2% that we wish to embed in the set B representing 2" possible binary
words. If we represent these codewords as binary vectors v € BF, it follows
naturally to define this encoding as a matrix G called the generator matriz
representing the linear transformation B¥ — B"™. The original codeword v is
now encoded as Gv € B". In effect, this matrix G spreads these codewords out
in the higher dimensional space.

Can we now formulate a quick test to see if an arbitrary word s is a code-
word? Note that the k& columns of G form a basis for the k-dimensional subspace
of codewords embedded in the n-dimensional space of possible words B". Let
C denote this embedded codeword subspace. By definition, valid codewords



are found strictly within this subspace as a linear combination of these k£ ba-
sis vectors, while invalid codewords will are found at least partly outside this
subspace. With this observation, it is interesting to examine this remaining
(n — k)-dimensional space. Given a generator matrix G, we can find the matrix
P of maximal rank, the rows of which span this remaining subspace. Then by
definition, for codeword v, its encoded form s = Gv must be in the null space
of P, or equivalently Ps = 0. We now have a quick test to see if arbitrary word
s is a valid codeword:

Theorem 1. Ps = 0 iff s represents a valid encoded codeword, that is, s € C.

The matrix P is called the parity check matriz.

With this notion of a binary vector space in hand, let’s talk of the nature of
errors. Let us define an error e as a contamination of encoded codeword s € C
to produce s’ = s+ e. If we perform a parity check on this new word s’, we find

Ps' = P(s+e¢) = Ps+ Pe =0+ Pe = Pe.

The value Pe is called the syndrome of error e. Note that if Pe is unique
for every possible error e, then given arbitrary word s’ we can determine and
fix whichever error is present. In fact, this is a sufficient condition for error
recovery:

Theorem 2. Error recovery is possible iff every error has a unique syndrome.

Since the value of Ps’ depends only on e, if Pe is different for all possible
errors e, then we can uniquely determine which error occurred and fix it.

Another useful way to examine the space of words to look at its topology
induced by a norm. Let us now look at such norm, that of Richard Hamming.

Definition 1 (The Hamming distance). For a word s € B", its weight is de-
fined as the number of nonzero entries, and is denoted as w(s). The Hamming
distance between two words s,t € B™ is then defined as d(s,t) = w(s + ¢). This
distance is a metric. The minimum Hamming distance of a code is the minimum

distance between any two codewords and is defined as d(C) = min{d(s,t) : s,t €
C and s # t}.

Another description of the Hamming distance is the minimum number of
bits that must be flipped to convert one word to another. A simpler definition
for the minimum Hamming distance is revealed when we remember that since C
is a linear space, s+t € C and so d(s,t) = w(s+t) = w(z) for some z € C. Now
the minimum Hamming distance is defined simply as d(C) = min{w(s) : s € C}.

With this notion of distance, we may now quantify the amount of error
as the distance between an encoded codeword s and the contaminated version
s’ = s+ e. Specifically, the number of errors is

d(s',s) = w(s' +5) =w(s +e+s) =w(e).

In this sense, errors move a codeword away from its original position. If we
assume all errors on to be equally likely, the this perturbation can move the



Figure 1: A space with three codewords (black dots) spread in an embedding
space. Shaded circles indicate the Hamming sphere of each codeword. We can
only recover contaminated codewords that are within these Hamming spheres.
For example, the blue words are recoverable while the red words are not.

original codeword in any direction. The process of recovering the original code-
word is now one of determining the closest codeword. It is often useful to include
this minimum distance in the description. Setting d = d(C) we denote a code
now as [n, k,d].

So what does the space of codewords look like? Remember again that the set
of valid codewords is spread out in the space of all possible words, any two code
words s,t € C being a distance of d(s,t) from each other. Figure 1 illustrates
a space containing three codewords. In order for us to recover a contaminated
codeword, we must be able to trace it back to a unique codeword. This gives rise
to the idea that, for a given code, only errors in certain regions are guaranteed to
be recoverable. Figure 1 indicates such regions, called Hamming spheres, with
shaded circles. For a given code C, all such spheres have radius r = %. In
other words, we can correct errors up to size t if d(C) > 2t + 1. More formally,

Theorem 3. For code C with d(C) > 2t for some ¢ € N, any contaminated
codeword s’ = s + e with error e satisfying w(e) < ¢ is uniquely recoverable.

Proof. Suppose we have some other codeword in t € C that is at least as close
to s’ as s is, and so may be confused with s. In other words s # ¢ yet both
d(s,s") = w(e) and d(t,s’) < w(e). Then we have

2t < d(C) < d(s,t) <d(s,s")+d(s',t) <2w(e) <2t
implying 2t < 2t which is a contradiction. Therefore s is closest to s'. O

Here our triplet notation [n, k, d] comes in handy. For a code to correct up
to t errors, d > 2t + 1.

One last important concept to define is that of the dual of a code define
to be the set of all words orthogonal to the code. We denote the dual as
Ct={seB":s-t=0, ¥Vt €C}.

We conclude this summary of classical coding theory by mentioning that, in
general, the task of finding the original codeword s in an arbitrarily structured



space is called the decoding problem and is considered of class NP. Classic coding
theory sets out to carefully construct codes with a structure that allows both
efficient encoding and decoding. The linear codes described above in terms of
generator matrices represent one such class of efficient codes. Along similar lines
other methods draw upon abstract algebra using structured groups. And still
other approaches use more exotic substrate.

3.2 A simple redundant code

The essence of error correction is to encode the data with enough redundancy
to ensure recovery in the presence of noise. A straightforward application of
this idea is to simply replicate the data. This happens commonly in real life: if
you didn’t quite catch what someone just said, you might ask them to repeat
it. Let’s now design such a system that encodes a single bit with three copies
of itself:

0 — 000
1 — 111.

With this setup, we decode the result as the bit with majority presence:

000,100,010,001 — 0
110,011,101,111 — 1.

How robust is this system? Suppose we know our noisy channel to flip bits with
probability p > 0. Majority voting here fails if two or more bits are flipped
in error. This system failure occurs with probability py = 3p*(1 — p) + p* =
3p? — 2p3. Compared against the original unprotected version that fails with
probability p, we want py < p which holds if p < 1/2.

4 Quantum Codes

4.1 The quantum analogue to linear codes

Here we recast this linear vector space formulation in a manner suitable for
addressing quantum systems. In the linear formation, words were considered
points in a high dimensional space. In the quantum version, words represent
points on the Bloch sphere, i.e. the state of the system. We begin by adopting
the bra and ket notation to denote words: s becomes |s). Since bits become
qubits, an n-bit word s € B"™ now becomes a n-qubit word ¢ € C®", the complex
Bloch hypersphere. We denote the Pauli operators as I, X = 0,, Y = 0y, and
Z =0,.

Let us develop a notion of quantum error now. Like any physical quantum
process, error is a unitary transformation. Possible such errors may include bit
flips, phase flips, or some combination thereof. With the addition of identity



I representing no error, these correspond nicely with the Pauli operators: X
represents a bit flip, Z represents a phase flip, and Y a combination.

For illustrative purposes, let us begin to design quantum codes for specific
errors, the first to address bit flips and the second to address sign changes. Here,
as in classic codes, codewords are embedded in a higher dimensional space with
special structure.

4.2 Three-qubit bit flip code

Let’s design our first quantum code following the pattern of the classic three
bit repetition code described in Section 3.2. In doing so, maybe we can correct
for bit flip errors analogous to those of the classical. Remember that we are
unable to observe the state of our quantum system directly, so our goal is to
reformulate the results from Section 3.1 in terms of inner products.

Given arbitrary initial state |¢)) = a|0) 4+ b|1) on the computational basis,
where a,b € C, we first transform it to a new redundant basis |¢) = ]000) +
b|111). This repetition has the effect of spreading the original single qubit state
over these three qubits. So as not to destroy the contained information, we
must be careful not to perform any direct measurements that would perturb
the state. Instead, we carefully measure certain aspects of this augmented
state while retaining the original state. Specifically, we measure the difference
between certain pairs of qubits.

Recall that errors, like all physical transformations, are unitary operators,
hence their action on a system can be undone. Theorem 2 tells us that if we can
uniquely determine which error syndrome occurred, we can recover the error.
Here, as in the classical version, we decode based on which qubit has majority
presence, and so here again we assume at most one qubit is in error. In this three
qubit encoding, there are the possible errors are: no error, first qubit flipped,
second qubit flipped, third qubit flipped. There are four projection operators
to detect for these syndromes:

P, = |000) (000] + |111) (111] 1no error

P, = [100) (100] 4 |011) (011]  error in first qubit

P, =|101) (101] 4 |101) (101] error in second qubit
( )

P5; =1001) (001| + |110) (110|  error in third qubit

Now we must convince ourselves that measuring to test for these error syn-
dromes does not disturb the state of the system. As an example, suppose the
first bit was corrupted so that now |¢)) = a|100) + b|011). We then have the
following result for syndrome measurement with P;:

(| Py|yp) = ((a (100] + b (011]) | [100) (100] + |011) (011| | (a [100) + b |011)))
= 42 (100/100) + 2ab (100/011)* + b (011]011)
= a2+ b2
=1.



Error (| Z12|) (]| Z12|0)

None +1 +1
First qubit -1 +1
Second qubit -1 -1
Third qubit +1 -1

Table 1: Four possible one qubit cases of error for the three qubit bit flip code.

Further, (1| Pylv), (1| Palw), and (1| Ps|1) are all zero. Notice that measurement
with the syndrome operator P; does not perturb the state of this corrupted
system. This is further confirmed in that the measurement (¢|P;|i)) contains
no information as to the a and b of the superimposed state.

Armed with these tests for specific errors, we can design a circuit to apply
the appropriate inverse error operation, e.g. X ® I ® I to un-flip the first qubit.

With further work, we can reduce the number of necessary syndrome mea-
surements from four to two. We define two new operators: the first operation
compares the first and second qubits, the second operation compares the second
and third qubits.

What operators perform this comparison? Remember that the Z operator
has spectral decomposition Z = |0) (0| — |1) (1|. Used in a tensor product we
get a resulting decomposition that has positive eigenvalues iff the two qubits
are the same sign:

Z ® Z = (]0) (0] — 1) (1]) ® (0) (0] — 1) (1])
=100) (00| — |01) (01| — |10) (10] + |11} (11|
= (/00) (00] + [11) (11[) — (|01) (01 + [10) (10])

For simplicity of notation involving multi-qubit operators, define an operator U;
to be the tensor product of one qubit operators U acting on qubit ¢ and I acting
on the remaining qubits, with analogous extension to multi-qubit operations Uj;,
Uijk, etc.. In this notation,

Zin=2@2Z@1, Zpn=102Z%07Z,

compare the first two qubits and the second two qubits, respectively. Combining
the results of these two measurements, we can determine if and where a bit
flip occurred. The four possible cases are laid out in Table 1. As with the
projectors originally defined, measurement with Z1o and Z23 does not perturb
the state. This is an intuitive result as two binary values can form four possible
combinations.

4.3 Three qubit phase flip code

We now define a quantum code to detect and correct for phase flips, an error
that takes a|0) 4+ b|1) to a|0) — b|1). While classical systems do not have a
notion of a phase channel, it is interesting that with an appropriate change of



Error <w|H®3212H®3|w> <z/J|H®3Z12H®3|z/1>

None +1 +1

Phase of first qubit -1 +1
Phase of second qubit -1 -1
Phase of third qubit +1 -1

Table 2: Four possible one qubit cases of error for the three qubit phase flip
code.

basis the phase flip encoding and decoding can simply use the three qubit bit
flip code just described. Recall that in the three qubit phase flip code, the error
was the X operator performing a bit flip: |0) — |1). Notice that if we rotate
our computational basis via the Hadamard gate H,

0 — 1) =(10)+1)/v2
1) — 1 =(0)-1)/v2,

the phase flip error will analogously be the HX H operation flipping ||) to |1}
and vice versa. Recall that H? = I, so a second application of the Hadamard
operator returns us to the original computational basis. In other words, we can
use the three qubit code as a black box by simply rotating before encoding and
rotating again after decoding. Where the syndrome measurements were Z;;,
they are now H®® Z;; H®3. The transformed syndrome measurements are laid
out in Table 2. These two codes are said to be unitarily equivalent since the
action of one is the same as the other under a unitary change of basis.

4.4 The Shor code

Named for its inventor Peter Shor, the Shor code detecting and correcting for
both bit flips and phase flips [10]. In what follows, we outline the technique for
a system of one qubit. This scheme is a clever combination of both the bit flip
and the phase flip codes described above.

Shor proposed mapping the computational qubit basis into a new basis of
two nine-qubit elements. This mapping is broken down into two parts. First we
map the computational basis to the phase flip basis,

0) — [LLL)
1) — (111,

then we map each of these qubits to the phase flip code,

1) —  (J000) + [111))/v/2
1Y —  (]000) — [111))/V/2.



The full mapping is then factored as

(|000) + |111))(]000) + |111))(|000) + |111))

2v/2
(|000) — |111))(]000) — [111))(|000) — |111))

2V2 '

Before performing some analysis on this representation, let’s first examine
a few examples of possible errors and their detection to develop an intuition.
Suppose the first qubit is flipped in error, switching |0...) to |1...) and vice versa.
For notational While we now have more qubits to test, we still follow the same
procedures for checking bit flips and phase flips as in the introductory codes.
In this case, we test the sign of the first and second qubits and find Z12 = —1
indicating one of them flipped. We then check the second two bits and find
Z53 = 1 indicating they are of the same sign, and so we conclude that the first
bit is flipped and correct it with X7. In the same manner we test for and correct
bit flips on the remaining qubits.

As a second example, suppose the first qubit phase was flipped via Z;.
Notice that such a phase flip would change the sign of the second element in
the first block of three qubits in each factored mapping changing |000) 4 |111)
to ]000) — [111) and vice versa. As such, a phase flip in any of the first three
qubits would have this affect. Our syndrome test then compares the phase of
the first block with the second via X123456 and reverses the phase flip via Z123.
Analogous computations address phase errors in the remaining blocks.

As a final example, suppose the first qubit has both bit flip and phase flip
errors, the corrupted state being Z; X1 [¢). We show that detection and correc-
tion of the bit flip error and the phase flip error may be performed sequentially.
Our first syndrome measurement to detect the bit flip error leaves the state
untouched, but correcting the bit flip transforms the corrupted state

10)

1)

Z1 X1 W) = XnZi X [¥) = —Z1 X1 X )
- _Zl |1/1> )

since the Pauli operators anti-commute, i.e. {X,Z} = XZ + ZX = 0. Now
notice that our syndrome measurement to detect the phase error on this new
state |¢') = —Z7 1) is equivalent to detecting the phase error on the original

10



corrupted state:

(' X123456]0") = <¢|ZIX123456Z1|¢>
<¢|ZIX121X23456|1/1>

- <1/1|21TZlX1X23456|1/1>
=- <7/}|ZIX2345621X1|7/}>

- <1/1|21TX1TX12345621X1|¢>

= — (Y|(X121)" X123456 (21 X1) [))
= (Y|(Z1X1)" X123456 (21 X1)|9)) .

Upon detection, the phase is fixed by applying the operator Zyo3.

How robust is this code? Since we compare neighboring qubits to see if their
sign is different, the code breaks down if more than one qubit in this 9-qubit
tuple is in err. If each qubit decoheres with probability p, then the probability
that one or zero qubits decohere is 9p(1 — p)® + (1 — p)? = (1 — p)3(8p + 1)
and so the probability that two or more qubits decohere leading to erroneous
decoding is 1 — (1 — p)3(8p + 1) =~ 36p> So, for a k-qubit message that we
encoded into 9k-qubits, our chance of successfully decoding the original message
is (1 — 36p?)~.

4.5 Some generalizations

Here we generalize the notion of error and show that the Shor code can correct
arbitrary error. Errors, like any action on a quantum system, are unitary oper-
ations and as such they can be represented as a linear combination of the Pauli
operators operating on the Bloch sphere. Recall that the state of an arbitrary
operation has Bloch representation as the density matrix

I+7-6
p=tT 1)

where 7"is a real vector weighting the contribution of each Pauli operator. Now,
for an arbitrary error corrupting qubit ¢, we may write

E;=epl +e1 X +epY +e;32. (2)
This leads the transformation that corrupts qubit @
) = al0) +b[1) — e [¥)) + € Xi [¥) + €Y [¥) + €isZi |[¢)) .

With this corrupted state, we begin testing for the presence of the various syn-
dromes on each qubit. For all tests on qubits other than the i-th, measurements
return zero. Notice that in the previous scenarios, our syndrome measurements

11



leave the state of the system unharmed because each error was either present or
not resulting in either 1 or 0 for the measurement. Here, the linear transforma-
tion leads to our system collapsing to the measured value with some probability.
We measure our system to be

X;|v)  with probability |al|?,

Y;|)  with probability |b|?,

Z;|w) with probability |c|?, or
|)  with probability |d|?.

The collapsed system is then corrected appropriately [4].

5 Various Codes

In this section we document several proposed quantum coding schemes in an
effort to illustrate the landscape of such methods. Where appropriate we will
document similarities and contrasts between the techniques.

5.1 Calderbank-Shor-Steane Codes

Drawing upon classic algebraic coding theory, CSS codes were invented by
Calderbank and Shor and simultaneously by Steane. They provide a general
formulation for constructing quantum codes from the linear codes readily avail-
able [7]. Suppose we have two classic linear codes C; = [n, k1] and Co = [n, k2]
where C2 C C; and both C; and C3- correct for errors of weight ¢, as judged by
the Hamming distance. We will now construct an [n,k; — k2] quantum code
denoted C'SS(Cq,Cs) capable of correcting ¢ qubit errors.

Recall that in classic codes, each codeword lives in its own subspace. A basis
can then be formed for codewords, each codeword then is formed from a linear
combination of these basis elements. We can think of these basis elements as
cosets with generator words. Co then generates cosets for elements = € Cy:

1
|g;+cz>z7 > lety).

2 yec,

These cosets are orthonormal, and they are akin to the codeword spheres in
Figure 1. To see this, suppose  and z’ are in different cosets of Cy, then by
definition, fy € Cy such that z +y = 2’ + /' for any ' € Co. In other words, we
can not form linear combinations to equate elements from the two sets, hence
they are orthonormal sets.

Now we begin to define the quantum code. Define our new code C'SS(C1,Cs)

to be spanned by the cosets |z + C2). The number of such cosets is % = 3% =

2F1=F2 thus our code may be denoted as [n, k; — ka].
We now step through examples using this code to correct for both bit flip
and phase flip errors, each in turn. Following the classic formulation, an error

12



is a vector that perturbs elements of our codeword. We only need to show that
we correct for basis codewords (cosets) since all other codewords are formed as
linear combinations. Denote a basis codeword as

N o lz+y).
|C2 y€eCa

Suppose this is corrupted by a bit ﬂip error ej. It then becomes,

|$L' +C2>

|z +Co+e1) = |z +y+ep).
\/|C2 2

y€eCa
If H; is the parity check matrix for C;, we can construct a quantum circuit with
zero ancilla to perform
lt+y+e)]0) — |z+y+e)|Hi(x+y+er))
|z +y +e1) [Hier),

since z,y € C1 so Hyz = Hyy = 0. We measure the ancilla to find |Hje;) telling
us which error is present and the remaining state is now

| +y +e1)
7

which can be corrected with appropriate bit flip operations to leave our original
state,

1 Z |z +y) =|x+Ca).
V |CQ| yECs

Suppose now instead that we had a phase flip error. Similar to the Shor’s
algorithm 4.4, we rotate our state via Hadamard gates, treat the problem again
as a bit flip error, and rotate back after correction.

Before beginning, let’s prove two equalities that will come in handy during
the reductions. Recall from our discussion of classical codes that a code C and its
dual C* are orthogonal spaces. Suppose y € C and z € C*. Then y -z = 0, and
so consequently, 3> co(—1)*¥ = |C|. Alternatively suppose y € C and 2 € ct
implying that z € C, so y - z # 0. In the binary formulation, y - z is either an
even or odd integer. When summing over the entire set C, for every element y
there is its “compliment” 4y’ € C with all bits flipped such that y -z +¢ -2 = 1.
Therefore, summing over the entire set C with modular arithmetic produces
terms that cancel each other: 37 .(—1)¥* =0.

A phase corrupted state may be expanded as

1 s
2l yecs

We begin by rotating each qubit via H®" to form

\/|C_2 Z (\/272 (w+u) €2+Z)| >>

y€eCa

13



where z runs over all words.

Notice that if we perform change of variable over the inner summation via
z' = z+ e, this looks like a bit flip error. In this new form, we may equivalently
sum over 2z’ since in either case we are summing over all the elements of the

space.
L (i)

y€eCa

since 2’ +e3 = z+e3 +e9 = z under modular arithmetic. This can be simplified
using the equalities we just proved:

P> (r 2 'Z'“”)

y€Ca

\/W Z Z (_1)(“_‘”)'2/ |2+ e2) + Z (—1)(fﬂ+y)-Z’ 12 + es)
| 2| yeCa Z’GC; z’gc;

\/|C2|_2n S X DI e

y€C2 \2'€Cs

— (1) (1) |2’ + e2)
|C2|2" Uezcz Z’GZC2L

o 2 DG )
’ECJ‘

/|C o
= |2—i| Z (=1)*% 2" +e3) .
z'€Cy

We now detect and correct for the bit flip using the parity matrix Hy con-
structed from the generator of C5. This produces:

Vil s gy,
2'€Cy

Finally we rotate back via H®". Since this is an orthogonal rotation, we change
the summation from Cs back to Co. Additionally the dot products are all now
zero yielding (—1)° = 1. This produces our final error free result:

|z +y)
VeopD

As we demonstrated for the Shor algorithm, in cases of both bit flip and
phase flip errors, both syndromes can be detected and corrected sequentially.
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Recall that the Shor code corrected for at most one error per every nine
qubits for a correction rate of 1/9. CSS codes correct for ¢ errors across n
qubits which can be made higher than 1/9 [3]. By measuring for information
equivalent to ¢ qubits, we recover errors in the remaining k& qubits representing
the message.

5.2 A seven qubit CSS code

We now look at a specific example of a CSS code showing increased capacity
compared to the original Shor algorithm. With the introduction of CSS codes
in 1996, Andrew Steane gave as an example one such code [11]. Tt was well
known that a simple repetition code producing a superimposed state |¢)) =
|000) + €' |111) is highly sensitive to sign changes because it represents the
superposition of two states representing vary different positions. Measuring for
the |111) basis element in this state involves measuring ¢ which is sensitive in
experiments.

Steane suggested a different basis pair where the measurement of interference
between the superimposed parts is less sensitive. He proposed using C; = [7,4, 3]
and its dual C2 = [7,3,4] to produce CSS(C1,C2) = [7,1]. First we show that
Cy C Cq, then we look at the quantum representation.

The parity matrices for C; = [7,4,3] and Cy = [7, 3,4] are

0001 111 (1)(1’88(1’(1)}

Hi=0 11001 1|, H=
Lo 10101 0010110
0001 111

Notice that the rows of H; are spanned by those of Hy: row 1 is row 4 of Ho,
row 2 is rows 243, and the last row is rows 143. Since these parity matrices
are kernels of the space, the inverse relation holds on the codeword spaces:
ker(H;) C ker(Hs) < Co C Ci. Since C3- = C, both codes correct for ¢t = 1
error.
The corresponding quantum basis elements are |0+ C3) and |14 Ca) =
X1234567 |0 + Cg> which expand out to:
la) =10+ C2) = ]0000000) 4 [1010101) + |0110011) + |1100110) +
|0001111) +|1011010) + |0111100) + [1101001)
[b) = |14 C2) = |1111111)+]0101010) + |1001100) 4 |0011001) +
[1110000) + [0100101) + [1000011) 4+ [0010110) .
By direct inspection, we confirm that |a) and |b) form a code of d(C) = 3. It

has been proven under the Hamming distance that this is the minimal number
of qubits required for borrowing classical linear codes [6].

5.3 A perfect five qubit code

Before we talk of a perfect code, we should generalize the minimal characteristics
of an quantum error correcting code. Every quantum code must entangle the
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original basis pair |0),|1) in some n-qubit space. Any transform, including errors,
on this basis may be expressed as a linear combination of the Pauli operators:

|E> = |€]>I+ |ex>X+ |ez>Z —i|€y>y

This produces one of four possible outcomes: unchanged, bit flip (X)), phase
flip (Z), or a combination of both bit and phase flip (Y'). Therefore, an error
correcting code must be able to determine which of these possible four outcomes
occurred. To do this, the dimension of the code basis must provide a subspace
for each of the three errors that can occur on each of the n qubits, plus one for
the unperturbed state. Double this to account for superpositions: 2(3n + 1).
Now this must be accommodated in the total space provided by the n qubit
code. Therefore,
2(3n+1) < 2™

This inequality was satisfied for the 9-qubit code of Shor and the 7-bit CSS code
of Steane; however, its minimum of n = 5 indicates that as few as five qubits is
all that is necessary.

Motivated by this insight, [6] produced a code found with constrained search
on coefficients of each five-qubit basis producing the (unnormalized) mapping:

0)  — 1b1) |00) — [b3) [11) + [b7) |10) + [bs) |01)
1) — [bo) [11) — [b3) [00) + [b7) |01) + |bs) |10)

where the b; indicate (unnormalized) Bell states: |b1 /o) = [000)+|111), |b3/4) =
|100) £ [011), |bs/6) = [010) £ [101), and |b7/s) = [110) £ [001). Another
such code was proposed simultaneously [2], and still others can be formed from
permutations.

5.4 Stabilizer codes

While optimally sized codes have been found, work has been done to develop
codes that are easier to work with. Stabilizer codes offer just such an easier
to manipulate formulation having arisen out of insights from abstract algebra.
Notice that the set of Pauli operators together with +1 and 43 eigenvalues form
a group called the Pauli group:

P = {+I, +il, £ X, +iX, +Y, £iY, + 7, +iZ}.

Let P, denote the group defined over n qubits, each element acting on one
qubit.

A stabilizer is an Abelian (self commuting) subgroup S C P,, containing only
the positive eigenvalue elements. For example, recall our observables to compare
the parity of qubits. They happen to form such a group: {I,Z12, Z13, Zas}.
Suppose we define a code making use of the positive nature of the subgroup’s
eigenvalues: C(S) = {|¢) : M |¢) = |¢) VM € S}. Codeword by construction
reside in the real positive eigenspace of each stabilizer element; however, errors
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F leave codewords into the negative eigenspace when projected on any stabilizer
element M € S that anticommutes with E [5]:

M(E||¢)) = —EM [¢) = —E[¢)).

A more compact representation for a group is its list of generators, those
elements of the group that the products of which form the remaining elements.
In our example of {I, Z12, Z13, Zas}, notice that Z13Z23 = Z13 and Z12715 = I.
Hence, each element of the group can be written as a product of two elements
Z12 and Za3. We can then unique represent the group as (Z12, Zo3). We have
only to project against this reduced set. Further, in a group of size n, there
are at most logn such generators, indicating that generators affording far fewer
computations in constructing codes.

What subgroups can form nontrivial stabilizer codes? By trivial code we
mean a code containing only |0). Two conditions are necessary for a stabilizer
S generating a nontrivial code [7]:

1. Elements of S commute: M N = NM for M, N € S. Since M, N are Pauli
operators, we know they either commute or anticommute. Suppose we
were to allow them to anticommute: M N = —NM. Now by construction
of S, MN |[¢)) = —NM |¢) = |[¢b) = — |¢) which holds implies S must be
trivial. Therefore, we only allow elements of S to commute.

2. —I must not be a member of S. Suppose it were a member, then —1I |¢)) =
[) = —|¢) = |¢), which again holds only if S only generates |0). There-
fore, we exclude —I from membership in S.

To illustrate the generality of such codes, a stabilizer of a five qubit code
would be generated by [5]

XRZQZX®I
IRX®ZRZ®X
XRI®X®ZI®Z
ZRXRI®X®Z

6 The Future

Quantum error coding has seen impressive advances in the past decade. Lower-
ing the number of qubits necessary has meant fewer resources for storage. Low-
ering the number of computations necessary for syndrome analysis has meant
simpler coding circuits. We now have fundamental results on error bounds, lim-
its of robust coding, and thresholds for which reliable quantum computing can
succeed. Work continues to design and build and scale physical realizations of
such systems.
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