Motivation

Challenges of level set methods

- Numerics of implementation
- Floating point arithmetic expensive on embedded devices

Existing approaches

- Reduce the domain
- Use binary ϕ over the entire domain
- Use integer ϕ with minimal interface

Our contribution

• Simple, fast, and approximate surface evolution suitable for arbitrary energy

Overview • Maintain set of points along zero interface • Use $\phi = -1$ for points inside, $\phi = 1$ for points outside, and $\phi = 0$ for points along zero interface • Use sign of δE to move interface points in or out • Simple rules for contraction and dilation of points by checking neighbors in any dimension • For 2D, points move in one of four directions • For 3D, points move in one of six directions Algorithm Compute force only along interface 2. Move interface points according to the force 3. Cleanup interface 4. Update regional statistics Pseudocode δφdx for each iteration do *{Contraction}* Compute force: computeforce() Restrict to contraction (only allow positive forces) Move and cleanup Bookkeeping: movein(), moveout() *{Dilation}* Compute force: computeforce() Restrict to contraction (only allow negative forces) Move and cleanup Bookkeeping: movein(), moveout() end for Movement of points

Overview

Variational energy minimization:

$$E(\phi) = E_{data}(\phi) + E_{smooth}(\phi)$$

=
$$\int_{x} \log(p_{in})(1 - H\phi) + \log(p_{out})H\phi dx - bE(\phi) = \delta\phi \left(\log\frac{p_{out}}{p_{in}} + div\left(\frac{\nabla\phi}{|\nabla\phi|}\right)\right)$$

• Numerics required in maintaining distance function, differencing scheme, upwinding, interpolation, etc.

Level set segmentation **Discrete** Approximation

1.4	0.8	0.7		1	1	1
0.7	-0.2	-0.3		1	0	0
-0.3	-1.3	-1.4		0	-1	-1

Assumption: Subpixel error matters little in most applications

Fast approximate surface evolution in arbitrary dimension Yogesh Rathi Anthony Yezzi Allen Tannenbaum James Malcolm

Georgia Tech, Atlanta, GA Brigham and Women's Hospital, Boston, MA

Proposed method

18 Feb 2008

Cleanup interface

Maintain minimal interface by dropping points that only touch one side of interface

Arbitrary energies defined by three functions: • computeforce() – compute scalar energy δE along surface • movein(), moveout() - update regional statistics based on specified points moving across interface

- White matter brain segmentation
- convergence

Energy implementation

Results

• Speeds ranging from 0.8-50 ms per iteration, about 3s total • Unit propagation greatly reduces number of iterations to

malcolm@gatech.edu