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Tracking with Graph Cuts: Treating Clutter with
Adaptive Penalties

James Malcolm and Yogesh Rathi and Allen Tannenbaum

Abstract—Many techniques for tracking based on gradient
descent cannot follow objects as they undergo large movements
or deformation. On the other hand, multi-hypothesis trackers
capable of handling such behavior are computationally expensive.
The standard graph cut technique offers a middle ground,
quickly capturing objects anywhere in the image; however,
because of its global nature, it is prone to capturing outlying
areas similar to the object of interest. This paper proposesa novel
method to constrain the standard graph cut technique to regions
of interest for tracking multiple interacting objects in near real-
time. For each object, we introduce a penalty based upon distance
from a region of interest. This results in a segmentation biased to
this area. Also, we demonstrate the use of a track point filterfor
predicting the location of the object in each frame. The distance
penalty is then centered at this location and adaptively scaled
based on prediction confidence. We demonstrate tracking in gray-
scale and color videos.

Index Terms—Image segmentation, tracking, graph-theoretic
methods

I. I NTRODUCTION

T RACKING an object in video has been the focus of much
research, and the problems accompanying this key task

are well-known. For example, the object might have weak
edges causing segmentations to leak out into the surrounding
area, the object may be near other objects of similar intensity
causing the tracking of unintended objects, or the object may
suddenly move outside the algorithm’s region of detection.
Multi-object tracking raises additional concerns involving the
interaction among objects.

Various methods have been proposed to overcome these
difficulties. To keep segmentations from spilling over object
boundaries, learned shape priors constrain segmentation to
a set of possible shapes [1]–[3]. When adjacent regions are
similar to the object of interest, multiple hypothesis trackers
can keep track of each region while for each frame determining
the most likely region based on some criteria [4]–[6]. To
simultaneously segment multiple objects, techniques havebeen
developed to take into account the interaction among objects
[7].

Methods based on gradient descent allow tracking highly
deformable objects, but cannot track large movements since
they search within a small region around the object [8],
[9]. Such spatial motion can be reliably tracked using a
finite dimensional state space, but the reduced state space
representation then restricts the possible shape deformations.
Recently, particle filters, typically used with finite dimensional

James Malcolm and Yogesh Rathi are with Brigham and Women’s Hospital,
Harvard Medical School. Allen Tannenbaum is with the Schoolof Electrical
and Computer Engineering, Georgia Institute of Technology.

Fig. 1. Tracking two interacting soccer players among others of similar
intensity: without distance penalty and applying distancepenalty to track one
or two players(left to right). Without the distance penalty, multiple non-
intended regions were captured.

state spaces, have been demonstrated in the space of infinite
dimensional curves; however, this method is computationally
complex and time consuming [10].

Graph cut techniques have received considerable attentionas
robust methods for energy minimization. Despite their success
for such key vision tasks as image segmentation and stereo
disparity, graph cuts have received little attention with respect
to tracking. This is largely due to the global segmentations
they produce which tend to catch unintended regions that are
similar to the object of interest. For example, the standard
graph cut technique for image segmentation finds regions with
high likelihood given intensity priors [11]. Figure 1 showsan
example where there are multiple regions of similar intensity.
The standard graph cut algorithm captures all of these regions,
and so post-processing is required to filter out those regions
that are not part of the object. However, this same feature, that
of capturing such regions anywhere in the image, naturally
addresses the problem of large object movements. The graph
cut will find the object even if it moved far relative to its
location in the previous frame. The problem is now one of
constraining the graph cut to capture only the objects of
interest, even if they made large movements, yet ignoring
other regions of similar intensity. Hence, a spatial constraint
is necessary.

Several techniques have used graph cuts for segmentation
in visual tracking applications. In [12] the segmentation is
constrained to a narrow band. For each frame, successive graph
cut segmentations converge on a final segmentation, each
pass constrained to a narrow band around the cut boundary
resulting from the previous pass. This method is dependent
upon initial contour placement and requires repeated cuts
on this reduced domain. Furthermore, no motion model is
assumed thus making the tracker highly dependent on the
previous segmentation. In [13] the authors use one graph
cut for each frame to estimate both the optical flow and
object position despite changes in illumination. However,since
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Fig. 2. The proposed closed-loop system. For each new image,we predict
each object centroid and use graph-cut segmentation to measure each object
centroid. The error between the two is then fed back both to the track-point
filter and to the segmentation for adaptively scaling the basins of attraction.

optical flow requires the multi-label graph cut technique [14]
and the graph proposed has such dense neighborhoods, the
current approach requires about one minute per frame. Also,
due to the local nature of optical flow, the technique cannot
handle large movements.

In addition to tracking, work has been done to constrain
segmentation based on a user selected region. The work of [15]
begins with a rectangle bounding the object, while the work of
[16] uses a narrow band. Both perform successive graph cut
segmentations incorporating additional user interactionwith
each pass. Neither method is targeted towards trackingper se,
but instead seeks the “best” segmentation. In these works, hard
constraints confine the segmentation within a user-selected
region and multiple graph cuts are performed. Additionally,
none of these methods has been generalized to simultaneously
segment multiple unique objects. In our work, the object
may be found a given distance from the predicted centroid
depending on the scale of the distance penalty, segmentation
is performed only once per frame, and the formulation handles
multiple interacting objects.

The method presented here makes several contributions to
the field of visual tracking. First, we incorporate an adaptive
distance penalty into the graph cut algorithm biasing segmen-
tations to a region likely to contain the given object. Second,
we adaptively scale the surface of this basin of attraction based
upon performance error. Third, we demonstrate how the multi-
label graph cut algorithm naturally handles multiple interacting
objects. Further, we show how to naturally integrate a predic-
tion filter in the proposed framework for robust tracking.

The basic algorithm is as follows. First, for each object,
we incorporate a distance penalty into the graph cut algorithm
to bias segmentations to a region likely to contain the object.
Second, we use a filter to predict the location of that object
based on the location of the previous segmentation and a
moving average of the object’s velocity. The distance penalty is
then centered at the predicted object centroid and extends out-
ward forming a basin of attraction. Third, to further integrate
the filter with the distance penalty, the scale of this distance
penalty, and hence the slope of its surface, is adaptively set
based on the prediction error. Finally, the interaction among
objects is naturally handled as segmentation is performed in
one cut using the standard multi-label graph cut algorithm.
The system is visualized in Figure 2.

The rest of the paper is organized as follows. Section II
outlines the standard graph cut segmentation framework. Sec-

tion III describes the distance penalty constraining segmenta-
tion. Section IV defines the filter used to predict the object
centroid, and Section V integrates the filter prediction error
with the distance penalty. Next, in Sections VI and VII, we
present our algorithm and experiments. Finally, in SectionVIII
we summarize our work and outline some possible future
research directions.

II. GRAPH CUTS

In this section, we briefly outline the standard multi-label
graph cut technique; for more details see [11], [14]–[17] and
the references therein.

Taking advantage of efficient algorithms for global min-
cut solutions, we cast the energy-based image segmentation
formulation in a graph structure of which the min-cut cor-
responds to a globally optimal segmentation. Evaluated for
an assignmentA of each pixel to a region labelr ∈ R,
such energies are typically constructed as the sum of a data
dependent term and a term for smoothness. The data dependent
term evaluates the penalty for assigning a particular pixelto
a given label. The smoothness term evaluates the penalty for
assigning two neighboring pixels to different regions,i.e. a
boundary discontinuity. These two terms may be thought of
as a regional term and a boundary term, often weighted by
λ ≥ 0 for relative influence:

E(A) =
∑

p∈Ω

Rp(Ap) + λ
∑

(p,q)∈N
Ap 6=Aq

B(p,q), (1)

wherep andq are pixels in the image domainΩ, andN is the
set of all unordered neighborhood pixel pairs. The choice of
neighborhood size and structure has a large influence on the
solution as smaller neighborhoods tend to introduce artifacts
[18].

To construct the graph representing this energy, each pixel
is considered as a graph node in addition to an extra node
for each region labelr ∈ R, e.g. background, first object,
second object. Figure 3 illustrates such a construction fora
3x3 image with two region labels. The data dependent term
is implemented by connecting each pixel to these extra nodes
with non-negative edge weightsRp(r) representing the penalty
for assigning pixelp to the regionr. Lastly, the smoothness
term is implemented by connecting each pairwise combination
of neighboring pixels(p, q) with a non-negative edge weight
B(p,q) representing the penalty for assigning pixelsp and
q to different regions. The min-cut of this weighted graph
represents the segmentation that best separates the regions.
See [11], [14] for more details.

Typical applications of graph cuts to image segmentation
differ only in the definitions ofRp andB(p,q). For example,
in the case of the binary foreground/background segmentation
problem, the authors of [11] use the negative log-likelihood
of a pixel’s fit into an intensity prior to compute the regional
weights, while intensity contrast is used in the boundary term:

Rp(fg) = − lnP (Ip|fg), Rp(bg) = − lnP (Ip|bg),

B(p,q) = exp
(

−‖Ip−Iq‖
2

2σ2

)

1
‖p−q‖ (2)
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Fig. 3. Underlying graph construction of a 3x3 image for the case of two
region labels,r1 andrb. Each grid node represents an image pixel and each
label has its own additional node. Each pixel’s node is connected to those of
its neighbors with weightB(p,q) (red) and connected to the additional label
nodes with weightRp (blue).

Fig. 4. Tracking a bear near other regions similar to its fur:no distance
penalty, distance penaltyφ with isocontours, and applying distance penalty
(left to right). Without the distance penalty, multiple non-intended regions
were captured.

where ‖p − q‖ is the standardL2 Euclidean pixel distance
in the image andσ2 =

〈

‖Ip − Iq‖2/‖p− q‖2
〉

, the average
contrast over all(p, q) ∈ N . Initialization proceeds as in [11]
where the user marks regions of foreground and background
to generate the intensity histograms for each region.

III. D ISTANCE PENALTY

The standard graph cut technique is capable of finding
regions matching the object located anywhere in the image.
However, by penalizing pixels based on their distance from
the expected location, a potential well is formed biasing seg-
mentation to a region of interest. Figure 4 shows segmentation
with and without such a penalty in the presence of unintended
regions similar to the object.

The distance penaltyφ is formed from a base maskM
which predicts the object shape. Centering that maskM at
the predicted object location and assigning pixels within the
mask zero penalty, each pixelx outside the mask is assigned its
distance from the nearest masked pixelmx ∈ M , i.e. φ(x) =
‖x−mx‖. Such a construction can be quickly computed with
the Fast Marching algorithm [19], [20].

A simple choice for the base maskM is the initial user
segmentation from the first frame. For objects that quickly
change shape from the initial segmentation, a moving average
of the past few segmentations may be more suitable for the
base mask (see Section VII and Figure 11). Several other
methods can be used for representing deformable shape priors
in graph cut segmentations [13], [21], [22].

IV. L OCATION PREDICTION

It is often the case that the object makes a large movement,
at times large enough to place it in an area of high distance
penalty. To overcome this problem, we predict the location
of the object in each frame based on its previous location

Fig. 5. Without location prediction, tracking can fail whenthe target makes
sudden movements. Here the tracker catches a defender as thetarget passes
(left to right).

Fig. 6. Effect of adaptiveα on tracking: non-adaptiveα (top, left to right)
and adaptiveα using prediction error(bottom, left to right). Tracking fails
without using error feedback to adaptively scale distance penalty. Predicted
centroid is shown as a blue dot.

and center the distance penalty at this predicted location.This
section describes integrating a general prediction filter into the
proposed framework while the next section, Section V, details
incorporating error feedback into the measurement.

To reveal the need for some form of prediction, we experi-
mented with the assumption that the object has not moved: the
distance penalty is centered at the last known object position.
Figure 5 shows the failure to track after the object has made a
sudden move. The movement placed the object too far outside
of the basin of attraction.

Demonstrating the flexibility of filter choice, we employ
two different filters, each motivated by the apparent motion
models exhibited in our imagery. The first video we examined
involved the camera following a soccer player across the
field (see Figure 7). The camera alternates between a fixed
view with the player moving across the screen and a relative
view where the camera pans to catch up. Due to the lack of
fixed image features, attempts at global motion estimation and
camera stabilization performed poorly. Deciding not to model
such transient camera motion, we used a simple linear filter
where the predicted centroid̃ct+1 is last centroidct projected
forward by the average displacement in the past few frames:

c̃t+1 = ct +
1

N

N
∑

j=0

(ct−j − ct−j−1). (3)

The remaining videos feature relatively stationary targets, and
so we employed a Kalman filter with an identity prediction
model to compensate for slight camera motion.

V. ERROR FEEDBACK

We now have the distance penalty constraining segmentation
and the filter predicting where to center this distance penalty,
but what if the filter is wrong? Figure 6 shows just such a
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case. The object has made a sudden move outside the predicted
basin of attraction.

What is needed is a way of adaptively scaling the distance
penalty based on the prediction error. In this work, we take
the error in prediction to be the distance between the predicted
c̃ and actualc centroids. The distance map is then scaled
by α(‖c̃ − c‖) taken from an exponential distribution of the
prediction error

α(x) = exp
(

−x2/ρ2
)

(4)

where ρ is a user defined model parameter that determines
the amount of expected object motion between frames. The
effect is that when the filter is off in its predictions of the
object centroid, the distance penalty is lowered to still capture
the object. After locking back onto the object, the prediction
error decreases, and theα automatically raises the distance
penalty back up to tighten around the object. Figure 6 shows
how, despite incorrectly predicted centroids, the system is able
to recover by adaptively widening the distance penalty.

For the case of the linear filter (3), such a linear filter is un-
stable under large displacements causing the distance penalty
to be driven to zero. To overcome this limitation, we decided
to incorporate prior knowledge of typical object movement to
limit the instability. Assuming objects to typically not move
more thanγ pixels, we saturate the error norm in (4) atγ:

α(x) = exp
(

−min(x,γ)2

ρ2

)

(5)

whereρ is empirically determined.

VI. PROPOSED ALGORITHM

For each new frame and for each object, the algorithm
predicts the object location, determines the distance penalty
scaling based on prediction error, computes edge weights for
the graph, and performs a graph cut segmentation. For ini-
tialization, the user roughly marks the object and background
in the first frame. This initialization defines both the intensity
priors used in the regional edge weights (II) as well as the
base maskM for each object.

In the prediction step, the centroid from the previous frame’s
segmentation is used as a measurementc. The filter predicts
the object centroid location in this new framec̃ from a moving
average of displacements.

The α(·) scaling function for the distance penalty is calcu-
lated from an exponential distribution of error‖c̃ − c‖ using
the form in (5).

We propose a new regional edge weight to augment the
standard weight in (II). Given the image, our goal is to
determine the best region assignmentr for each pixel; in other
words, our goal is to maximizeP (r|I). Now, Bayes rule tells
us thatP (r|I) ∝ P (I|r)P (r). If we assumeP (r) is uniform,
then its negative log-likelihood is zero, and so it falls outof
the expression and we have the standard regional term (II).
Instead, we assume a non-uniform object prior with probability
P (r) ∝ (α(‖c̃ − c‖)φ)β and hence:− lnP (r) ∝ α(‖c̃−c‖)φ.
We assume the background to still be uniformly distributed
and so its distance penalty prior disappears. The weightβ > 0
defines relative distance penalty influence as compared to the

Fig. 7. Tracking two opposing players from the soccer sequence. Despite
prolonged contact and occlusion, the technique is able to uniquely track the
two targets. Full image(left) and selected cropped frames(right).

intensity prior. We now have the new regional terms for object
and background:

Rp(r) = − lnP (Ip|r) − β lnPp(r)

= − lnP (Ip|r) + β α(‖c̃ − c‖)φ(p) (6)

Rp(bg) = − lnP (Ip|bg) − β lnPp(bg)

= − lnP (Ip|bg) (7)

Finally, we take the min-cut of this graph to yield a multi-
region segmentation.

VII. E XPERIMENTS

Tracking was performed on gray-scale and color videos
and representative frames were chosen to exhibit clutter with
objects of similar intensity undergoing large movements. Full
videos are included in the supplementary material.

The parameters were defined as follows. For all experi-
ments, we setλ = 10 in (1). Also experiments involving the
linear filter (3), we foundγ = 5 and ρ = γ/2 to be quite
robust. In (6), we setβ = 10 for gray-scale imagery and
β = 2 for color. Unless otherwise noted, the base maskM is
taken to be the initial user segmentation.

On a standard workstation1, depending on the image size,
the current system tracks one object at roughly five frames
per second and two objects at roughly two frames per second
fluctuating slightly based on the chosen neighborhood. The
choice of neighborhood also affects the smoothness of the
segmentation with smaller neighborhoods tending to introduce
irregular segmentations [18]. It is important to note that,since
the segmentations for sizes 4 and 8 were not as smooth,
they introduced larger variations in the calculated centroid
and hence larger prediction errors. Increased smoothing (λ)
was required to maintain track with smaller neighborhoods.
Tracking with size 4 or 8 was therefore not as robust as size 16.
Unless otherwise noted, results are shown with a neighborhood
of size 16.

The first low-resolution, gray-scale video sequence involves
several soccer players of similar intensity, yet the intensity
profile of each team differs enough that opposing players can
be distinguished. Figure 7 shows tracking of a player from
each team amidst occlusion and contact with several other
players of similar intensity.

1Pentium IV 3 GHz, 2 GB RAM
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Fig. 8. Tracking the bear and man in color. Due to large movements and
changes in shape, at several points the tracker is partly thrown off, yet it
recovers fully. Full image(left) and selected cropped frames(right).

Fig. 9. Tracking three people in color despite severe occlusion and the similar
intensity profiles of the dark figures. Full image(left) and selected cropped
frames(right).

The second video sequence is a color television commercial
staging a fight between a bear and a man. Figure 8 shows
tracking of the bear and man as they make sudden movements
or change shape. These sudden changes throw the tracker
slightly off but in all cases the tracker recovers fully in a few
frames.

The third sequence is a color video demonstrating occlusion
as two people walk past a third. Figure 9 shows that the tracker
is able to maintain track of all three figures. Notice also that
despite the similar intensity profiles of the two dark figures,
the tracker keeps them separated throughout the video.

The fourth sequence is a color video of a stuffed animal
as the camera rotates with egomotion. As the stuffed animal
rotates in the picture, its shape changes significantly and so, as
Figure 10 shows, the initial segmentation is a poor choice for
forming the base maskM ; the basin is too narrow and so clips
the head and tail as the object rotates. Figure 11 demonstrates
that simply forming the base mask from the average of the
past few segmentations captures this change and provides an
appropriately shaped basin to capture the full object. Herewe
used the average of the last five segmentations to form the
base mask. Figure 12 shows the underlying averaged mask
for these frames.

The last and perhaps most challenging video sequence
involves a helicopter circling overhead a van. This low-
resolution video combines highly unstable camera motion
with a low frame rate making for large movements as the
helicopter struggles to keep the camera centered on the van.
Figure 13 shows selected frames. Notice that the segmentation
captures the bright white van top, the range of intensities most
distinguishing it from the background. To highlight the camera
instability, Figure 14 shows several frames as the helicopter
struggles to maintain a stable view. For several frames the
tracker fails to find the van at all. Notice that the camera even

Fig. 10. Unsuccessful tracking using a static base mask. If the base mask
is formed from initial upright segmentation(left), the basin of attraction is
too narrow and so tracking fails to fully capture the object as it rotates. Full
image (left) and selected cropped frames showing failure to capture the full
object (right).

Fig. 11. Forming the base mask from an average of the past few segmen-
tations provides a basin of attraction suitable to capture the full object. Full
image(left) and selected cropped frames(right).

loses sight of the van all together in one frame. Although
several regions similar to the van are captured, the tracker
is ultimately able to resume tracking the van as the distance
penalty adaptively scales.

To highlight the advantages of the global graph cut seg-
mentation, we compared against the more local level set
method. Figure 15 shows the standard level set method failing
to track the van. The level set technique performs local
gradient descent, and so it only looks for the van in the
small region immediately surrounding the curve. Thus, due
to a large displacement, it makes an incorrect segmentation
from which the system is unable to recover. Particle filters
have been used in conjunction with the level set method
[23]. However, the computational burden of computing the
segmentation separately for each particle makes this approach
impractical in most applications where speed is critical.

VIII. C ONCLUSION

This paper demonstrates a distance penalty to constrain
the standard graph cut segmentation to regions of interest.
An observer is proposed to predict object locations while the
prediction error is used to scale the distance penalties forming
basins of attraction that are adaptively sized. The multi-label
graph cut algorithm is then used to find the objects in one
pass.

From here, there are several future directions. In the exper-
iments presented, we used intensity alone as a discriminating
feature, yet more robust feature spaces can be exploited [24].
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Fig. 12. The base masks corresponding to the frames in Figure11 formed
from an average of the past few segmentations.

Fig. 13. Tracking a van from a helicopter-mounted camera circling overhead.
Full image(left) and selected cropped frames(right).

Also, at present the system is not at full real-time rates
for multiple objects, and so faster graph solution methods
should be examined and extended for multi-label energies
[25]. In many cases, the distance penalty inhibits capturing
the entire object, something that more principled shape priors
may overcome [21].
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