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Abstract. This note summarizes a technique that uses tractography to drive the
local fiber model estimation. Existing techniques use independent estimation at
each voxel so there is no running knowledge of confidence in the estimated model
fit. We formulate fiber tracking as recursive estimation: at each step of tracing
the fiber, the current estimate is guided by the previous. To do this we perform
tractography within a filter framework and use a discrete mixture of Gaussian
tensors to model the signal. Starting from a seed point, eachfiber is traced to its
termination using an unscented Kalman filter to simultaneously fit the local model
to the signal and propagate in the most consistent direction. Despite the presence
of noise and uncertainty, this provides a causal estimate ofthe local structure
at each point along the fiber. We applied this technique to a phantom simulating
several complex pathway interactions and highlight tractspassing through several
prescribed seed positions.

1 Introduction
The advent of diffusion weighted magnetic resonance imaging has provided the oppor-
tunity for non-invasive investigation of neural architecture. Using this imaging tech-
nique, neuroscientists can investigate how neurons originating from one region connect
to other regions, or how well-defined these connections may be. For such studies, the
quality of the results relies heavily on the method of reconstructing pathways.

A common approach to tractography is to chose a local fiber model and then fit
that model at each voxel independent of other voxels. However, tractography is a causal
process: we arrive at each new position along the fiber based upon the diffusion found
at the previous position. In this note, we treat model estimation and tractography as
such by placing this process within a causal filter [1,2]. As we examine the signal at
each new position, the filter recursively updates the underlying local model parameters,
provides the variance of that estimate, and indicates the direction in which to propagate
tractography. Using causal estimation in this way yields inherent path regularization
and accurate fiber resolution through branchings and crossings.

2 Method

2.1 Modeling local fiber orientations

To begin estimating within a finite dimensional filter, we model the diffusion signal
using a mixture of tensors. This enables estimation directly from the raw signal with-
out separate preprocessing or regularization. At each image voxel, diffusion is mea-
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Fig. 1: System overview illustrating relation between the neural fibers, the scanner signal, and the
unscented Kalman filter as it is used to estimate the local model. At each step, the filter uses its
current estimated model to predict a synthetic signal and then compares that against the actual
measured signal from the scanner in order to update its estimated state.
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constant,wj are convex weights, andDj are tensors, each representing a diffusion pat-
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In this exercise, we begin with the assumption of a mixture oftwo components.
This choice is guided by several previous studies which found two-fiber models to be
sufficient at lowb-values [3,4,5]. Also, we assume the shape of each tensor to be el-
lipsoidal,i.e. there is one dominant principal diffusion directionm with eigenvalueλ1

and the remaining orthonormal directions have equal eigenvaluesλ2 = λ3 (as in [5,6]).
Last, we fix the weights so that each component contributes equally. While assuming
equally-weighted compartments may limit flexibility, we found that the eigenvalues ad-
just to fit the signal in much the same way a fully weighted model would adjust. These
assumptions then leave us with the following model used in this work:
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, with m,p,q ∈

S
2 forming an orthonormal basis aligned to the principal diffusion directionm. The free

model parameters are thenm1, λ11, λ21, m2, λ12, andλ22. In our current implemen-
tation, we restrict eachλ to be positive.

2.2 Estimating the fiber model

Given the measured signal at a particular voxel, we want to estimate the underlying
model parameters that explain this signal. As in streamlinetractography, we treat the
fiber as the trajectory of a particle which we trace out. At each step, we propose to trace
the local fiber orientations using the estimation at previous positions to guide estima-
tion at the current position. The Kalman filter combines the measured signal with the
predicted signal to update the estimated model at the current position. We then move
a step in the most consistent direction and repeat this procedure at the new location.
Recursive estimation in this manner greatly improves the accuracy of resolving individ-



ual orientations and yields inherently smooth tracts despite the presence of noise and
uncertainty.Fig. 1 illustrates this filtering process.

To use a state-space filter for estimating the model parameters, we need the application-
specific definition of four filter components:

1. The system state (x): the model parameters
2. The state transition function (f ): how the model changes as we trace the fiber
3. The observation function (h): how the signal appears given a particular model state
4. The measurement (y): the actual signal obtained from the scanner

For our state, we directly use the parameters for the two-tensor model inEq. 1:

x = [m1 λ11 λ21 m2 λ12 λ22 ]T , m ∈ S
2, λ ∈ R

+. (2)

For the state transition we assume identity dynamics; the local fiber configuration does
not undergo drastic change as it moves from one location to the next. Our observation
is the signal reconstruction,y = h[x] = s = [ s1, ..., sm ]T usingsi described by the
model inEq. 1, and our measurement is the actual signal interpolated directly on the
diffusion weighted images at the current position.

Since our signal reconstruction inEq. 1is nonlinear, we employ an unscented Kalman
filter to perform estimation. Similar to classical linear Kalman filtering, the unscented
version seeks to reconcile the predicted state of the systemwith the measured state
and addresses the fact that these two processes–predictionand measurement–may be
nonlinear or unknown. See [7,1,2] for details on this filtering formulation.

3 Results and Discussion
Among the provided phantoms, we present results using the 3mm version atb = 1500
[8]. Instead of initializing tractography from the prescribed seed points, we begin by
seeding in voxels with nonzero baseline intensity and terminating tractography when the
estimate becomes isotropic, essentially “full-brain” tractography. From these potential
pathways,Fig. 2shows a representative fiber for each seed point. We further restricted
movement to the image plane.

With the explosion of techniques for mapping connectivity,it is often difficult to
assess the relative merits among various approaches, and each application has its par-
ticular goals. For connectivity studies, one may only be interested in the final resolved
pathway; however, questions arise such as whether to branchor whether to represent
connectivity as a discrete path or a voxel-to-voxel connectivity matrix possibly telling
more about the relative certainty of connectivity. For tissue studies, one may be primar-
ily concerned with the estimated microstructure at each position. Filtered approaches
like this provide not only an estimate of these quantities (mean) but also an additional
measure of uncertainty (variance).

The approach presented here may be considered a local method: at the current po-
sition we estimate a direction and take a step. With such approaches, one mistake can
send the subsequent trajectory off track. We believe that more global approaches should
be considered, ones that take into account larger portions of the fiber pathway. Further,
we believe that anatomical priors should be incorporated. Such a progression of tech-
niques may be considered analogous to how level set methods developed from local
edge-based computations, to more global region-based approaches, and further with
integration of shape priors.



Fig. 2: Baseline image from the synthetic phantom (3mm,b = 1500) overlayed with selected
fiber tracts (colored) and seed points (white). The filter is capable of tracing through regions of
crossing, branching, and fanning.
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