
Label Space:
A Multi-object Shape Representation

James Malcolm1, Yogesh Rathi2, and Allen Tannenbaum1

1 Georgia Institute of Technology, Atlanta, GA
{malcolm,tannenba}@ece.gatech.edu
2 Brigham and Women’s Hospital, Boston, MA

yogesh@bwh.harvard.edu

Abstract. Two key aspects of coupled multi-object shape analysis are the choice
of representation and subsequent registration to align the sample set. Current
techniques for such analysis tend to trade off performance between the two tasks,
performing well for one task but developing problems when used for the other.

This article proposes Ln label space, a representation that is both flexible
and well suited for both tasks. We propose to map object labels to vertices of a
regular simplex, e.g. the unit interval for two labels, a triangle for three labels, a
tetrahedron for four labels, etc. This forms a linear space with the property that
all labels are equally separated.

On examination, this representation has several desirable properties: algebraic
operations may be done directly, label uncertainty is expressed as a weighted
mixture of labels, interpolation is unbiased toward any label or the background,
and registration may be performed directly.

To demonstrate these properties, we describe variational registration directly
in this space. Many registration methods fix one of the maps and align the rest of
the set to this fixed map. To remove the bias induced by arbitrary selection of the
fixed map, we align a set of label maps to their intrinsic mean map.

1 Introduction

Multi-object shape analysis is an important task in the medical imaging community.
When studying the neuroanatomy of patients, clinical researchers often develop statis-
tical models of important structures which are then useful for population studies or as
segmentation priors [7,9,10,11,12]. The first step for this problem consists in choosing
an appropriate shape descriptor capable of representing its statistical variability.

A common starting point for shape representation is a simple scalar label map, each
pixel indicating the object present at that pixel, e.g. a one indicating object #1, a two
indicating object #2, etc. Many techniques go on to map this entire volume to another
space, the value of each pixel contributing to describe the shape. In this new space,
arbitrary topologies may be represented, correspondences are naturally formed between
pixels, and there are no control points to distribute.

The simplest implicit representation is a binary map where each pixel indicates the
presence or absence of the object. Signed distance maps (SDM’s) are another exam-
ple of an implicit representation, each pixel having the distance to the nearest object
boundary, a negative distance for points inside the object [7,12].
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Fig. 1. Tsai et al. [11] proposed mapping each pixel from object label to a point in a space shaped
as a non-regular simplex, each vertex corresponding to an object label. Visualized here for the
case of two objects and background, the bottom left background (0,0) is a distance of 1 from both
labels top (0,1) and right (1,0), while labels are separated from each other by a distance of

√
2.

Fig. 2. Example configurations for the S1 hypersphere representation of [2]: three, six, and seven
labels (left to right) with background at the center

For the multi-object setting, binary maps may be extended to scalar label maps, each
pixel holding a scalar value corresponding to the presence of a particular object; how-
ever, this representation is not well suited for algebraic manipulation. For example, if
labels are left as scalar values, the arithmetic average of labels with values #1 and #3
would incorrectly indicate the label of value #2, not a mixture of labels #1 and #3.

To address this, mappings of object labels to linear vector spaces were proposed,
an approach to which our method is most closely related. The work of Tsai et al. [11]
introduced two such representations, each for a particular task. For registration, the
authors proposed mapping scalar labels to binary vectors with entries corresponding
to labels; a one in an entry indicates the presence of the corresponding label at that
pixel location. As an example for the case of two labels and background, Figure 1
visualizes the spatial configuration each pixel is mapped onto. Here the background
is at the bottom left origin (0,0) with one label at (1,0) and the other at (0,1). It is also
important to note that he goes on to perform registration considering each entry of these
vectors separately. For shape analysis, Tsai et al. [11] proposed mapping scalar labels to
layered SDM’s, in this case each layer giving the signed distance to the corresponding
object’s interface.

Note that in both vector valued representations described in Tsai et al. [11], each
label lies on its own axis and so the dimension of the representation grows linearly with
the number of labels, e.g. two objects require two dimensions, three objects require
three dimensions. To address this spatial complexity, Babalola and Cootes [2,3] pro-
pose a lower dimension approximation to replace the binary vectors in registration. By
mapping labels to the unit hypersphere Sn, they demonstrate that even configurations
involving dozens of labels can be efficiently represented with label locations distributed
uniformly on a hypersphere. Figure 2 gives examples for S1.

Finally, Pohl et al. [10] indirectly embeds label maps in the logarithm-of-odds space
using as intermediate mappings either the binary or SDM representations of [11].
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Fig. 3. The first three Ln label space configurations: a unit interval L2 in R for two labels, a
triangle L3 in R

2 for three labels, and a tetrahedron L4 in R
3 for four labels (left to right)

Particularly well suited for probabilistic computations, the logarithm-of-odds space is
also a field providing closed operations for addition and scalar multiplication. As with
the representations of Tsai et al. [11], the dimensionality of the logarithm-of-odds space
increases with each additional object. We should also note that the work of [10] did not
address registration, but instead assumed an already registered atlas via [8].

Once the representation is settled upon, registration must be performed to eliminate
variation due to differences in pose. A common approach is to register the set to a
reference image; however, this then introduces a bias to the shape of the chosen refer-
ence. Joshi et al. [6] propose unbiased registration with respect the mean sample as a
template reference. Assuming a general metric space of transformations, they describe
registering a sample set with respect to its intrinsic mean and use the L2 distance for
demonstration. A similar approach uses the minimum description length to measure
distance from the intrinsic mean [13]. Instead of registering to a mean template, an al-
ternative approach is to minimize per-pixel entropy. Using binary maps Miller et al. [8]
demonstrate that this has a similar tendency toward the mean sample. This approach has
also been demonstrated on intensity images [14,15]. Among these energy-based regis-
tration techniques, iterative solutions include those that are variational [11,6] and those
that use sampling techniques [15].

1.1 Our Contributions

This paper proposes a multi-object implicit representation that maps object labels to
the vertices of a regular simplex, going from a scalar label value to a vertex coordinate
position in a high dimensional space which we term label space and denote by Ln for
n labels. Visualized in Figure 3, this regular simplex is a hyper-dimensional analogue
of an equilateral triangle, n vertices capable of being represented in n − 1 dimensions
(Ln ⊂ R

n−1). Lying in a linear vector space, this space has several desirable prop-
erties: all labels are equally separated in space, addition and scalar multiplication are
natural, label uncertainty is expressed as a weighted combination of label vertices, and
interpolation is unbiased toward any label including the background.

The proposed method addresses several problems with current implicit mappings.
For example, while the binary vector representation of Tsai et al. [11] was proposed
for registration, we will demonstrate that it induces a bias sometimes leading to mis-
alignment, and since our Ln label space representation equally spaces labels, there is
no such bias. Additionally, compared to the SDM representation, the proposed method
introduces no inherent per-pixel variation across equally labeled regions making it more
robust for statistical analysis. Hence, the proposed method better encapsulates the func-
tionality of both representations. Further, the registration energy of Tsai et al. [11] is
designed to consider each label independent of the others. In contrast, Ln label space
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Fig. 4. For the S1 hypersphere configurations of [2], cases such as these yield erroneous results
during interpolation. Judged by nearest neighbor, interpolating between two labels resolves to
background, ambiguously either background or another label, and finally another label (left to
right).

jointly considers all labels. We will also demonstrate that, while lowering the spatial
demands of the mapping, the hypersphere representation of Babalola and Cootes [2]
biases interpolation and can easily lead to erroneous results. The arrangement of our
proposed label space incurs no such bias allowing linear combinations of arbitrary
labels.

The rest of this paper is organized as follows. Section 2 explores several problems
that can develop with the implicit representations described above [2,10,11]. Section 3
then describes the proposed Ln label space representation documenting several of its
properties. Section 4 demonstrates variational registration directly within this represen-
tation, and finally in Section 5 we summarize our work.

2 Related Work

2.1 Shape Representation

The signed distance map (SDM) has been used as a representation in several studies
[1,7,10,11,12]; however, it may produce artifacts during statistical analysis [4]. For ex-
ample, small deviations at the interface cause large variations in the surface far away,
thus it inherently contains significant per-pixel variation. Additionally, ambiguities arise
when using layered signed distance function to represent multiple objects: what happens
if more than one of the distance functions indicates the presence of an object? Such am-
biguities and distortions stem from the fact SDM’s lie in a manifold where these linear
operations introduce artifacts [4,5].

Label maps have inherently little per-pixel variation, pixels far from the interface
having the same label as those just off the interface. For statistical analysis in the case
of one object, Dambreville et al. [4] demonstrated that binary label maps have higher
fidelity compared to SDM’s. However, for the multi-object setting, the question then
becomes one of how to represent multiple shapes using binary maps? What is needed
is a richer feature space suitable for a uniform pair-wise separation of labels.

An example of such a richer feature space is that of Babalola and Cootes [2] where
labels are mapped to points on the surface of a unit hypersphere Sn placing the back-
ground at the center. This is similar to the binary vector representation described by
Tsai et al. [11] to spread labels out; however, Babalola and Cootes [2] argue that lower
dimensional approximations can be made. They demonstrate that configurations in-
volving dozens of labels can be efficiently represented by distributing label locations
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uniformly on the unit hypersphere using as few as three dimensions. Since any label
may neighbor the background, the background must be placed at the hypersphere cen-
ter, equally spaced from all other labels. The fundamental assumption is that pixels
only vary between labels that are located near to each other on the hypersphere, so
the placement of labels is crucial to avoid erroneous label mixtures. For example, Fig-
ure 4 demonstrates that if two labels far from each other are mixed, the result may be
attributed erroneously to other labels. Notice in particular that the central placement
of the background gets in the way when interpolating across the sphere. Smoothing in
Figure 7 also demonstrates these inherent effects of the lower dimensional approxima-
tion, effects that cannot be avoided unless the dimension approaches label cardinality.

The logarithm-of-odds representation of Pohl et al. [10] provides the third and final
shape representation we compare against. Aside from the normalization requirement
for closed algebraic manipulation, the main concern when using this representation is
the choice of intermediate mapping, a choice that directly impacts the resulting prob-
abilities. The authors explore the use of both representations from [11]; however, both
choices have inherent drawbacks.

For the layered SDM intermediate mapping, Pohl et al. [10] notes that SDM’s are a
subspace of the logarithm-of-odds space. This means that, while the layered SDM’s are
exactly the logarithm-of-odds representation, results after algebraic manipulation in the
logarithm-of-odds space often yield invalid SDM’s (but still valid logarithm-of-odds
representations). Using such results, computing probabilities as described in [10] may
yield erroneous likelihoods. Notice also, that the generalized logistic function is used to
compute probabilities. This introduces additional problems as the use of the exponential
ensures that these probabilities will always have substantial nonzero character across the
entire domain, even in areas never indicated by the sample set.

Using smoothed binary maps as intermediates also leads to problems. To begin, us-
ing binary maps directly would mean probabilities of either zero or one, which in the
log domain produce singularities. Smoothing lessens such effects yet results in a loss
of fine detail along the interface. Also, Pohl et al. [10] shows examples where after
normalization the logarithm-of-odds representation develops artifacts at the interface
between objects, an effect which is magnified in the logarithm domain.

2.2 Registration

Tsai et al. [11] propose a binary vector representation specifically for registration. As
Figure 1 shows, this representation places labels at the corners of a right-triangular
simplex; however, unlike this present work, it is not a regular simplex but has a bias
with respect to the background. The background, located at the origin, is a unit distance
from any other label, while any two labels, located along a positive axis, are separated
by a distance of

√
2. The effect may be seen in registration where there is a bias to

misalign labels over the background (penalty 1) rather than over other labels (penalty√
2).
To demonstrate the effect of this induced bias, consider the example in Figure 5 with

black background and two rectangles of label #1, one with strip of label #2 along its
top. Using the representation and registration energy of Tsai et al. [11], there are two
global minima: the image overlapping and the image shifted up. In the first case, label
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Fig. 5. Alignment of an image with a reference template using the representation of Tsai et al.
[11] results in two possible alignments, the shifted one misaligning along both the top and bottom
with respect to the reference (red dots indicate minima). For just x- and y-translation, isocontours
of the energy landscape show the non-unique energy minima in (c).

#1 is misaligned over label #2, while in the second case that a strip of pixels at both
the top and bottom are misaligned over the background; that is, because of this bias,
there can be twice as many pixels misaligned in the shifted case than in the unshifted.
These global minima (indicated by red dots in the energy landscapes) are shown only
for translation; considering additional pose parameters further increases the number
of local minima in the energy landscape representing misalignments. Also, this is not
inherent in the energy, as the same phenomena is observed using the energy in (1).
Since all labels are equidistant in the proposed representation, there are fewer minima
and hence less chance of misalignment.

3 Label Space

Our goal is to create a robust representation where algebraic operations are natural,
label uncertainty is captured, and interpolation is unbiased toward any label. To this
end we propose mapping each label to a vertex of a regular simplex; given n labels,
including the background, we use a regular simplex which lies in n− 1 dimensions and
denote this by Ln (see Figure 3). A regular simplex is an n-dimensional analogue of an
equilateral triangle.

In this space, algebraic operations are as natural as vector addition, scalar multipli-
cation, inner products, and norms; hence, there is no need for normalization as in [10].
Label uncertainty is realized as the weighted mixture of vertices. For example, a pixel
representing labels #1, #2, and #3 with equal characteristic would simply be the point
p = 1

3v1 + 1
3v2 + 1

3v3, a point equidistant from those three vertices (see Figure 6). Also,
we have that such algebraic operations are unbiased toward any label since all labels

Fig. 6. Proposed L3 label space for the case of three labels: a point indicating the equal presence
of all three labels (left), and a point indicating the unequal mixed presence of just the left and top
labels (right)
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(a) Scalar label map

(b) Sn hypersphere of Babalola and
Cootes [2]

(c) Ln label space

Fig. 7. Progressive smoothing directly on scalar label maps, the hypersphere representation of
Babalola and Cootes [2], and Ln label space. Both the scalar label maps and hypersphere rep-
resentations develop intervening strips of erroneous labels. Only label space is able to correctly
capture the label mixtures during smoothing. The rightmost hypersphere in Figure 4 depicts the
S1 configuration used here in (b).

(a) Binary vector representation of Tsai
et al. [11]

(b) Ln label space

Fig. 8. Progressive smoothing directly on binary vector representation of Tsai et al. [11] and Ln

label space. Smoothing among several labels in the binary vector representation yields points
closer to background (black) than any of the original labels. Label space is able to correctly begin
to smooth out the sharp corners of the bottom two regions without erroneous introduction of the
black background label.

are equally spaced; hence, there is no bias with respect to the background as is found
in both [2,11]. Label space is robust to statistical analysis much like binary label maps,
a specific case of label space. Additionally, problems encountered in the intermediate
representations of [10] are avoided. Specifically, smoothing is unnecessary and so fine
detail is retained, and interfaces are correctly maintained.

To demonstrate some of these properties, we performed progressive smoothing using
the various representations described: scalar label values, the binary vector representa-
tion of Tsai et al. [11], the Sn representation of Babalola et al. [2], and Ln label space.
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In Figure 7, the first experiment has each example beginning on the left with the jagged
stripes of labels #5, #7, and #3, respectively. Scalar label values show the appearance of
intervening labels #4, #5, and #6 as the original labels blend, and the hypersphere rep-
resentation shows the appearance of labels #2, #6, and #4 as interpolation is performed
across the hypersphere (the hypersphere configuration used here is the rightmost de-
picted in Figure 4). In Figure 8, the second experiment shows that the smoothing among
multiple labels using binary vectors produces points closest to the background (black).
In both experiments, only label space correctly preserves the interfaces.

4 Registering to the Mean Map

We demonstrate here the variational registration of a set of maps to their intrinsic mean
map, thereby respecting the first order statistics of the sample set. The proposed repre-
sentation has the advantage of supporting registration directly on the representation. By
directly we mean that differentiable vector norms may be used to compare labels.

In this section, we begin with a review of reference-based approaches for rigid regis-
tration borrowing the notation of [11]. After demonstrating how a bias can be induced
by the choice of reference template, we demonstrate unbiased registration using the
mean map as the reference template in the manner of [6]. We conclude with experi-
ments on synthetic maps, the 2D slices from [11] with three labels, and 2D slices with
eight labels.

Common approaches to registration begin by fixing one of the maps as a reference
and registering the remaining maps to this fixed map. This is done in both [2,11]; how-
ever, as Joshi et al. [6] describes, this initial choice biases the spatial statistics of the
aligned maps. In Figure 9 we see this effect: as the choice of fixed map is varied, the re-
sulting atlas varies in translation, scale, rotation, and skew (registration was performed
as in [11]). To avoid this bias, Joshi et al. [6] describe registration with respect to a
reference that best represents the sample set. In addition to avoiding bias, the resulting
gradient descent involves far less computation than that proposed in [11] where each
map is compared against each other map. Also, since the reference image is a convex
combination of the set, there is no fear of the set M̃ shrinking to minimize the energy.

Before presenting the energy used, we first describe the problem borrowing nota-
tion from [11]. For the set of label maps M = {mi}N

i=1, our goal is to estimate
the set of corresponding pose parameters P = {pi}N

i=1 for optimal alignment. We
denote as m̃ the label map m transformed by its pose parameters. An advantage of
implicit representations over explicit ones is that, once the label maps have undergone

Fig. 9. Label maps from patient MRI data after registration where a different label map has been
fixed in each run. The choice of which map to fix can subtly distort measurements and hence the
statistical model constructed from the registered set.
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this transformation, we can assume direct per-pixel correspondence between maps and
use a vector norm to perform comparison. We model pose using an affine model, and
so for 2D, the pose parameter is the vector p = [x y sx sy θ k]T corresponding
to x-,y- translation, x-,y-scale, in-plane rotation, and shear. Note that this is a fully
affine model as compared to the rigid transformation model used in [11]. The trans-
formed map is defined as m̃(x̃, ỹ) = m(x, y) where coordinates are mapped according

to
[
x̃ ỹ 1

]T = T (p)
[
x y 1

]T
, where T (p) is the decomposable transformation matrix

T (p) =

⎡

⎣
1 0 x
0 1 y
0 0 1

⎤

⎦

︸ ︷︷ ︸
M(x,y)

⎡

⎣
cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤

⎦

︸ ︷︷ ︸
R(θ)

⎡

⎣
sx 0 0
0 sy 0
0 0 1

⎤

⎦

︸ ︷︷ ︸
H(sx ,sy)

⎡

⎣
1 k 0
k 1 0
0 0 1

⎤

⎦

︸ ︷︷ ︸
K(k)

for a translation matrix M(x, y), rotation matrix R(θ), anisotropic scale matrix H
(sx, sy), and shear matrix K(k), all for the parameters taken from p.

As in [6,15], we assume the intrinsic mean map μ̃ of the sample set to best repre-
sent the population. We then attempt to minimize the energy defined as the squared
distance between each transformed label map m̃ and this mean map μ̃ of the set M̃ as
it converges:

d2 =
N∑

i=1

‖m̃i − μ̃‖2, (1)

where μ̃ = 1
N

∑N
i=1 m̃i, and while ‖ ·‖ may be any differentiable norm, we take it to be

the elemental L2 inner product ‖x‖ = 〈x, x〉1/2 =
∫

x2dx. Notice how using a vector
norm here jointly considers all labels in contrast to the energy proposed by Tsai et al.
[11]. Further, since the reference map μ̃ is intrinsic, there is no concern of the set M̃
shrinking to minimize (1). Hence, there is no need for the normalizing term introduced
in [11] which allows for a reduced complexity energy here.

This work uses a variational approach to registration. Specifically we perform gra-
dient descent to solve for the pose parameters minimizing this distance. We find the
gradient of this distance, taken with respect to the pose pj , to be:

∇pj d
2 = 2〈∇pj m̃j , m̃j − μ̃〉. (2)

Notice that terms involving other label maps (m̃i for i �= j) fall out and that the
gradient of the mean contributes nothing. It remains to define ∇pj m̃j . For the kth

element of the pose parameter vector pj , using the chain rule produces ∇pk
j
m̃j =

[
∂m̃j

∂x̃
∂m̃j

∂ỹ 0
]

∂T (pj)

∂pk
j

⎡

⎣
x
y
1

⎤

⎦ , where ∂T (pj)

∂pk
j

is computed for each pose parameter where

matrix derivatives are taken componentwise. Finally, gradient descent proceeds by re-
peated calculation of ∇pj d

2 and adjustment of pj for each map in the set until conver-
gence.

To illustrate this technique, we first performed alignment of a synthetic 2D set. The
unaligned set consists of 15 maps of three labels and background. Figure 10 shows
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(a) Example maps from unaligned set

(b) Original (c) Aligned

Fig. 10. Alignment of a set of 15 synthetic maps with three labels and background. The original
and aligned sets are superimposed for visualization.

(a) Perturbed origi-
nal

(b) Recovered

Fig. 11. From the dataset used by Tsai et al. [11], one map is chosen and perturbed under several
transformations, yet registration is able to recover the pose parameters to bring the perturbed
versions back to the original chosen map. The perturbations ranged up to translations of 5% of
the image, rotational differences of 20◦, and scale changes +/- 5% of the image. The original and
aligned sets are superimposed for visualization.

examples from this set as well as the original and aligned sets. For visualization, we
created a superimposed map for both the original unaligned set and the aligned set by
summing the scalar label values pixelwise and dividing by the number of maps, hence
this is the mean scalar map.

We then turned to verifying our method using the 2D data from the study by Tsai
et al. [11]. Taking one map from this set, we formed a new set by transforming this
map arbitrarily. Restricting ourselves to the rigid rotation pose model used in that study,
we formed transformations involving translations of 5% of the image size, rotational
differences of 20◦, and scale changes of +/- 5% of the image. Figure 11 shows that
the technique successfully recovered the initial map. Figure 12 shows alignment on the
entire data set.

Lastly, we performed registration using 2D maps obtained from expert manual seg-
mentation of 33 patient MRI scans involving eight labels and background. Figure 13
shows examples from the original unaligned set as well as the superimposed maps after
alignment.
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(a) Original (b) Aligned

Fig. 12. Alignment of a set of 30 maps used in the study by Tsai et al. [11]. The original and
aligned sets are superimposed for visualization.

(a) Example maps from unaligned set

(b) Original (c) Aligned

Fig. 13. Alignment of a set of 33 maps with eight labels and background obtained from manual
MRI segmentations. The original and aligned sets are superimposed for visualization.

5 Conclusion

This paper describes a new implicit multi-object shape representation. After detailing
several drawbacks to current representations, we demonstrated several of its properties.
In particular, we demonstrated that algebraic operations may be done directly, label un-
certainty is expressed naturally as a mixture of labels, interpolation is unbiased toward
any label or the background, and registration may be performed directly.

Modeling shapes in label space does have its limitations. One key drawback to la-
bel space is the spatial demand. To address this we are examining lower dimensional
approximations much like Babalola and Cootes [2]. Some interpolation issues such as
those noted in Figure 4 might be avoided by taking into consideration the empirical
presence of neighbor pairings when determining label distribution.
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